主页 > 语录文案 > 正文

数学悖论及其研究意义论文(100句)

2023-01-04 14:58:20 来源:阿帮个性网 点击:

一、数学悖论

1、同色马悖论(数学归纳法)

2、悖论虽然看似荒诞,但却在数学哲学史上产生过重要影响。一些著名的悖论曾使高明的哲学家与数学家为之震惊,为之绞尽脑汁,并引发了人们长期艰难而深入的思考。可以说,悖论的研究对促进数学思想的深化发展是立过汗马功劳的。

3、数学中的悖论或者谬误,常常都是因为违反某条数学规则或数学定律而导致的结果。这使得这些悖论成为说明这些规则的优秀载体,因为它们的违规导致了某些相当“奇异”的结果,比如说1=或1=0,简直荒谬!它们显然具有娱乐性,因为它们非常微妙地将我们引向了一个不可能的结论。通向这个怪异结果的每一步看起来似乎都是正确的,这个事实常常令我们倍感困惑。这相当具有激励作用,并且会使结论令人印象深刻得多。

4、按《斯坦福哲学百科全书》“悖论”条目的定义,悖论通常是指这样一种命题,按普遍认可的逻辑推理方式,推导的结论超出“通常可接受的见解”。或者说结论是有矛盾的。

5、讲座旨在激发西浦同学数学学习兴趣,引导进行兴趣导向型研究学习。普及数学知识,拓展数学视野。

6、悖论并没所避逻辑问题逻辑框架内解决直吸引着奇研究并解决些问题例芝诺阿喀琉斯追乌龟仔细考虑发现极限问题始终纠结极限间内利用知识新颖发现另面悖论实际或者产程应用范围比较所直术或理论研究

7、当x=1时,1,2,3,4,…,n这些数中的每一个都等于,这就导致它们全都彼此相等。当然,这不可能是正确的。出于这个原因,我们定义是无意义的。在数学中,为了避免一些荒谬的陈述,我们会做出一些定义,从而使事情有意义或不产生矛盾,正如这里的情况所表明的。

8、祖父悖论看似杜绝了人为操纵命运的可能,过去无法改变,爷爷一定会在孙子的谋杀中幸存下来;还有种可能是,你进入了另一个平行宇宙,这是你从未生活过的世界,但你的爷爷奶奶却也在这里。

9、在古希腊时代,克里特岛的哲学家埃庇米尼得斯(约公元前6世纪)发现的“说谎者悖论”可以算作人们最早发现的悖论。公元前4世纪的欧布里德将其修改为“强化了的说谎者悖论”。在此基础上,人们构造了一个与之等价的“永恒的说谎者悖论”。埃利亚学派的代表人物芝诺(约490B.C.—430B.C.)提出的有关运动的四个悖论(二分法悖论、阿基里斯追龟悖论、飞矢不动悖论与运动场悖论)尤为著名,至今仍余波未息。

10、因此,既然且,那么就有。这一论证过程出了什么错?

11、现在,修补数学基础的工作尚未取得令人完全满意的结果,数学家们仍在顽强拼搏。

12、数学悖论作为悖论的一种,主要发生在数学研究中。按照悖论的广义定义,所谓数学悖论,是指数学领域中既有数学规范中发生的无法解决的认识矛盾,这种认识矛盾可以在新的数学规范中得到解决。数学中有许多著名的悖论,除前面提到的伽利略悖论、贝克莱悖论外,还有康托尔最大基数悖论、布拉里——福蒂最大序数悖论、理查德悖论、基础集合悖论、希帕索斯悖论等。数学史上的危机,指数学发展中危及整个理论体系的逻辑基础的根本矛盾。这种根本性矛盾能够暴露一定发展阶段上数学体系逻辑基础的局限性,促使人们克服这种局限性,从而促使数学的大发展。

13、特别策划丨“数学大家谈栏目”专访奥数教练李唯瑒(下)

14、数学悖论:http://baike.baidu.com/view/293html?wtp=tt

15、在某个城市中有一位理发师,他的广告词:"本人的理发技艺十分高超,誉满全城。我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸。我对各位表示热诚欢迎!"来找他刮脸的人络绎不绝,自然都是那些不给自己刮脸的人。可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,你们看他能不能给他自己刮脸呢?如果他不给自己刮脸,他就属于"不给自己刮脸的人",他就要给自己刮脸;而如果他给自己刮脸呢?他又属于"给自己刮脸的人",他就不该给自己刮脸。

16、脑洞:小学奥林匹克暗袋摸球概率题终极版。

17、这个数学悖论也是罗素提出来的。1902年,罗素从已被人们公认为数学基础理论的集合论中,按照数学家们通用的逻辑方法,“严格”地构造出这个数学悖论。把它通俗化就是理发师悖论。

18、介绍有趣的数学悖论,普及数学知识

19、现在给大家讲一个故事──当然这也是一个有趣的数学问题:阿溪里斯能追上乌龟吗?

20、既然是离散数学的悖论,那就按照离散数学书上的顺序给出3种悖论。集合论的悖论:A={x|x不属于A}A到底存在吗?推理的悖论:A问B:你说一句话,如果你说假话,我就枪杀你,你说真话我就吊死你。B:你会枪杀我逻辑合成的悖论:"囚徒困境",也就是A=1B=1A^B=0

二、数学悖论及其研究意义论文

1、三大学派都提出了修补数学基础的方案,由于各执己见,爆发了一场大论战。这场大论战对现代数学发展影响深远,还导致了许多新的数学分支的诞生。

2、冯·诺依曼解火车苍蝇题.彭翁成.个人博客.科学网.

3、“二分法”。运动着的物体在到达目的地之前必须先完成行程的一半,而在完成行程的一半后,还必须完成全部行程的一半的一半……如此分割,乃至无穷,因而它与目的地之间的距离是无限的,也因此而永远也不能抵达目的地。

4、于是鳄鱼得意地说到:可以,那么你猜猜,我会不会吃掉你的孩子,如果你猜对了,我就把孩子还给你!

5、这两个数集能够很容易构成一一对应,那么,在每个集合中有一样多的元素吗?

6、一个无穷级数的谬论

7、悖论的定义:表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。

8、可是,有一天,这位理发师从镜子里看见自己的胡子长了,他本能地抓起了剃刀,但却突然想到:如果他不给自己刮脸,他就属于“不给自己刮脸的人”,他就要给自己刮脸,而如果他给自己刮脸呢?他又属于“给自己刮脸的人”,他就不该给自己刮脸。同学们看他该不该给自己刮脸呢?

9、概述:一根箭是不可能移动的。飞行过程中的任何瞬间,它都有一个暂时的位置,由此可知一枝动的箭是所有不动的集合。

10、如何组织学生“课堂讨论”——“尝试反馈法”课改之教学反思|重点看文末

11、这个悖论的关键在于:这里的两个单位没有得到恰当的处理,用下面这个例子可以给出最佳的回答:2英尺=24英寸,0.5英尺=6英寸,相乘得到1平方英尺=144平方英寸,即1英尺=12英寸。

12、数学悖论:说谎者悖论、芝诺悖论、上帝悖论、硬币悖论、预想不到的考试的悖论等;科学悖论:阿基里斯悖论、二分法悖论、

13、这个关于时间旅行的悖论源自罗伯特·海因莱因的短篇小说,近来又出现在诺兰导演的《星际穿越》中。

14、罗素悖论震撼了世界数学界,导致了一场涉及数学基础的危机。人们已经发现,在数学这座辉煌大厦的基础部分,存在着一条巨大的裂缝,如不加以修补,整座大厦随时都有倒塌的危险。

15、看了这部电影,你会更加懂得什么是伟大的老师——看《嗝嗝老师》有感

16、有人会讲,芝诺悖论和量子力学的关系啊,芝诺悖论和时空是否可以无限细分的关系啊。简单地反驳,如果追不上乌龟的大兄弟和飞不动的箭都存在于一个空间可以无限细分的理想空间里呢?

17、如果这还不够让你心烦,那么请考虑下面这个论证过程:

18、本文只想谈点轻松的话题。其实,许多数学悖论是饶有趣味的,它不仅可以令你大开眼界,还可以从中享受到无尽的乐趣。面对形形色色富于思考性、趣味性、迷惑性的问题,你必须作一点智力准备,否则可能就会在这悖论迷宫中转不出来了。看看下面的几个小故事,你就会相信此话不假。

19、一位美国数学家来到一个赌场,随便叫住两个赌客,要教给他们一种既简单又挣钱的赌法。方法是,两个人把身上的钱都掏出采,数一数,谁的钱少就可以赢得钱多的人的全部钱。赌徒甲想,如果我身上的钱比对方多,我就会输掉这些钱,但是,如果对方的钱比我多,我就会赢得多于我带的钱数的钱,所以我赢的肯定要比输的多。而我俩带的钱谁多谁少是随机的,可能性是一半对一半,因此这种赌法对我有利,值得一试。赌徒乙的想法与甲不谋而合。于是两个人都愉快地接受了这位数学家的建议。看来这真是一种生财有道的赌博。

20、赫赫有名的罗素悖论,由英国数学家勃兰特·罗素教授于20世纪初提出。这条悖论证明了19世纪的集合论是有漏洞的,几乎改变了数学界20世纪的研究方向。

三、数学悖论1=0

1、请听下面的有趣的对话:

2、不管上帝怎么笑,我们还要一如既往地思考

3、除此之外,古今中外还有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考。解决悖论难题需要创造性的思维,悖论的解决又往往可以给人带来全新的观念。

4、在女儿高一家长会上的发言

5、芝诺(约公元前490~前425)。芝诺以其悖论闻名,他一生曾巧妙地构想出40多个悖论,在流传下来的悖论中以关于运动的四个“无限微妙、无限深邃”的悖论最为著名。他提出这些悖论很可能是为他老师的哲学观点辩护。关老师总把“阿基里斯追龟悖论”挂在嘴边(小脚老太婆),然而这四个悖论组合在一起有着奇妙的魅力。二分法悖论:任何一个物体要想由A点运动到B点,必须首先到达AB中点C,随后需要到达CB中点D,再随后要到达DB中点E。依此类推。这个二分过程可以无限地进行下去,这样的中点有无限多个。所以,该物体永远也到不了终点B。不仅如此,我们会得出运动是不可能发生的,或者说这种旅行连开始都有困难。因为在进行

6、原来,这个爱吹牛的理发师,已经陷入自相矛盾的窘境。如果他给自己刮胡子,那就不符合他声明的前一半,这样,他就不应当给自己刮胡子;但是,如果他不给自己刮胡子,那又不符合他声明的后一半,所以,他又应当给自己刮胡子。无论刮不刮,横竖都不对。

7、悖论是一种认识矛盾,它既包括逻辑矛盾、语义矛盾,也包括思想方法上的矛盾。数学悖论作为悖论的一种,主要发生在数学研究中。按照悖论的广义定义,所有数学规范中发生的无法解决的认识矛盾,这种认识矛盾可以在新的数学规范中得到解决。

8、同样,这也是探究数学边界的一个良好资源。为什么不允许除以0?为什么根式的乘积并不总是等于乘积的根式?这只是众多悖论中的几个问题,揭示这些“滑稽”的结果很有乐趣,而且它们具有很高的研究价值。

9、在中国古代《墨经》中,也有一句十分相似的话:“以言为尽悖,悖,说在其言。”意思是:如果你认为“所有的话都是错的”这句话是对的,那就错了,因为这句话本身就是对的。

10、我们欠孩子真正的数学阅读(附推荐目录)

11、一年级孩子的读题能力有多重要

12、悖论的抽象公式就是如果事件A发生,则推导出非A,非A发生则推导出A。

13、三门问题,MontyHall问题

14、谷堆悖论:显然,1粒谷子不是堆;

15、脑洞:原来也有平胸不一定能为国家省布料的时候。

16、脑洞:理科生们笑到内伤。

17、接下来的这个悖论似乎更简单了。有人把它归入数学中对策论的研究范畴。

18、从真实的前提出发,用可以接受的推理,但结论则是明显错误的。它说明定义“堆”缺少明确的边界。它不同于三段论式的多前提推理,在一个前提的连续积累中形成悖论。从没有堆到有堆中间没有一个明确的界限,解决它的办法就是引进一个模糊的“类”。这是连锁(Sorites)悖论中的一个例子,归功于古希腊人Eubulides,后来的怀疑论者不承认它是知识。“Soros”在希腊语里就是“堆”的意思。

19、概率论与数理统计(浙大版)

20、15陈皓然老师将为你支招

四、数学悖论问题

1、这个故事类似“自相矛盾”的故事。教徒是不可能回答出路人的问题的。如果回答“能”,说明石头厉害,上帝举不起来石头,但又与上帝无所不能矛盾;如果回答“不能”,也与上帝无所不能矛盾,教徒只能和卖矛和盾的人一样,“哑口无言”。

2、如果我们仔细分析这段话,会发现存在自相矛盾,使得开会无法进行,你能看出问题所在吗?

3、小镇有个爱吹牛的理发师。有一天,理发师夸下海口说:“我给镇上所有不自己刮胡子的人刮胡子,而且只给这样的人刮胡子。”

4、这个悖论被抽象出来,就是集合论中的“自指悖论”。R是所有不包含自身的集合的集合,那么R是否包含R呢?如果包含,则应该不包含;如果不包含,则应该包含。那么到底哪里出了问题呢?是我们的逻辑学?还是集合论本身?

5、概述:小城的理发师放出豪言:“我只帮城里所有不自己刮脸的人刮脸。”那么问题来了,理发师给自己刮脸么?如果他给自己刮脸,就违反了只帮不自己刮脸的人刮脸的承诺;如果他不给自己刮脸,就必须给自己刮脸,因为他的承诺说他只帮不自己刮脸的人刮脸。两种假设都说不通。

6、带你一起学习高数,复习考研数学

7、有个虔诚的教徒,他在演说中口口声声说上帝是无所不能的,什么事都做得到。一位过路人问了一句话:“上帝能创造一块他自己也举不起来的石头吗?”

8、脑洞:n只青蛙n张嘴,2n只眼睛4n条腿,扑通n声跳下水……你想起数列是个什么鬼了吗?

9、假设你现在面前有三扇门看起来完全一样,其中一扇门后面有一辆轿车,其余两扇门后面是一只羊,你从三扇门中选一扇。在门被打开之前,主持人——他知道哪扇门后面有车——会为你打开一扇后面有羊的门。现在,你有一次机会,要么坚持你之前的选择,要么改变主意选另一扇门。请不要忘记你的目标是猜中有车

10、悖论读音为bèilùn,是指表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。

11、三门问题及其相关问题(概率)

12、小镇有个爱吹牛的理发师。有一天,理发师夸下海口说:“我给镇上所有不自己刮胡子的人刮胡子,而且只给这样的人刮胡子。”

13、试试背圆周率,听听弹奏圆周率

14、在这个领域里,由于数学家的观点不同,产生了3个著名的学派。以罗素为主要代表的数学家叫逻辑主义学派,他们认为,只要不允许使用“集合的集合”这种非逻辑语言,罗素悖论就不会发生;以布劳威尔为主要代表的数学家叫直觉主义学派,他们认为,“集合的集合”是不能用直觉理解的,不承认它的合理性,罗素悖论自然也就不会产生了;以希尔伯特为主要代表的数学家叫形式主义学派,他们认为,悖论是一种不相容的表现。

15、假定“我说的这句话是假的”为真。既然此语句为真,但它说的就是这个语句是假的,于是得出这个语句是假的!如果“我说的这句话是假的”为假,它就必须是真的,所以它不可能是假的。这个悖论是本质性的,难以消除。

16、悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。

17、你不能解决的七个很有意思的悖论.百度文库

18、孪生子悖论:“孪生子悖论”是指以快速运动为参考系的钟,比静止参考系中的钟走得慢。

19、概述:酒吧里会发生这种情况:如果有人在喝酒,那么每个人都在喝酒。乍看起来是一个人喝酒导致了所有人喝酒。实际上,如果酒吧里至少有一个人没在喝酒,那么按照数学中的实质条件(materialconditional),对那些没喝酒的人来说,有些人在喝酒,这些人中的每个人都在喝酒,情况依然成立。

20、这类本质型悖论是难以解决的。其解决难度远远超过了谬误型悖论和挑战常识型悖论。

五、数学悖论的例子

1、数学美拾趣.易南轩.科学出版社

2、可以说,芝诺悖论曾经引起了很多的讨论,极大地推动了人们对无穷大,无穷小的认识,有其历史意义。但是现在来看,已经不算一个很重要的问题。而接下来要说的另一套悖论,则直接带来了第三次数学危机:说谎者悖论。

3、数学家们勇敢地接受了挑战。他们认真考察了产生罗素悖论的原因。原来,之所以出现罗素悖论这样的怪物,是由于在集合论中,“集合的集合”这句话不能随便说。于是,数学家们开始探索数学结论在什么情况下才具有真理性,数学推理在什么情况下才是有效的……,从而产生了一门新的数学分支——数学基础论。

4、没想到三年之后,英国数学家、逻辑学家和哲学家——罗素,提出著名的理发师悖论,震惊了整个数学界:

5、数学悖论出现是因为数学知识体系不完备造成的,每一个悖论解决都是一次数学飞跃。都会一门数学分支出现,所以在中学教育适当讲几个悖论,有助于激发学生兴趣。可以讲讲根号2悖论,理发师悖论,无穷悖论。这些悖论学生基本上可以理解。这样可以活跃课堂教学效果

6、17世纪的几何悖论。意大利数学家托里拆利(EvangelistaTorricelli)将y=1/x中x≥1的部分绕着x轴旋转了一圈,得到了上面的小号状图形(注:上图只显示了一部分图形)。然后他得出:这个小号的表面积无穷大,可体积却是π。

7、公元前5世纪,芝诺用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:他提出让阿基里斯与乌龟之间举行一场赛跑,并让乌龟在阿基里斯前头1000米开始。假定阿基里斯能够跑得比乌龟快10倍。比赛开始,当阿基里斯跑了1000米时,乌龟仍前于他100米;当阿基里斯跑了下一个100米时,乌龟依然前于他10米……所以,阿基里斯永远追不上乌龟。

8、大名鼎鼎的罗素悖论(也称理发师悖论),直接导致了第三次数学危机的出现。

9、阿溪里斯是古希腊传说中善走的神,现在让他和乌龟赛跑。假定他的速度为乌龟的10倍。乌龟先出发,走了公里。阿溪里斯开始追赶它,当阿溪里斯走完这公里时,乌龟又向前走了公里;阿溪里斯再走完这公里时,乌龟又向前走了公里……阿溪里斯的速度再快,走过一段路总得花一段时间,乌龟速度再慢,在这一段时间里也总要再向前走一段路程。这样说来,阿溪里斯是永远追不上乌龟了。同学们,你认为这种说法正确吗?你能说出其中的理由吗?

10、数学大家谈栏目丨专访数学研究专家沈明哲!

11、19:00—21:00

12、分析:倘若他不给自己刮脸,那么他属于“不给自己刮脸的人”,按照他的说法他就要给自己刮脸;倘若他给自己刮脸,他又属于“给自己刮脸的人”,按照他的说法就不该给自己刮脸。

13、数学悖论出现是因为数学知识体系不完备造成的,每一个悖论解决都是一次数学飞跃.都会一门数学分支出现,所以在中学教育适当讲几个悖论,有助于激发学生兴趣.可以讲讲根号2悖论,理发师悖论,无穷悖论.这些悖论学生基本上可以理解.这样可以活跃课堂教学效果

14、对于有些涉及无限的古典悖论,如芝诺悖论中的“阿基里斯悖论和飞矢不动悖论,尽管可以看出其谬误(既:应该用微积分来处理“无限”),但其逻辑推理方式在当时是基本被认可的,所以在当时是可以称为悖论。但是,微积分出现以后,可以看出芝诺悖论的推理中用有谬误的推理过程,应该归类于谬误。

15、“饮酒悖论”由于雷蒙德·斯穆里安(RaymondSmullyan)的书而出名,这本书的名字就叫《这本书叫什么名字》(WhatIstheNameofthisBook?)。

16、在“永恒的三角形”中,A表示选择货币政策独立性和资本自由流动,B表示选择固定汇率和资本自由流动,C表示选择货币政策的独立性和固定汇率。这三个目标之间不可调和,最多只能实现其中的两个。这就是著名的“三元悖论”。

17、这究竟是怎么回事?电梯明明在每层停留的时间都相同,可为什么会让接近顶楼和底层的人等得不耐烦?

18、谬误悖论指其推理过程是有谬误的,但据此确立的命题不但似乎是荒谬的,而且确实是错误的,归类于谬误。

19、概述:如果你乘坐哆啦A梦的时光机,回到你爷爷奶奶相遇之前,杀死你的爷爷会发生什么?如果杀死了你的爷爷,那么你就从未诞生;如果你从未诞生,如何回到以前杀死你的爷爷?

20、那么我们究竟是如何到达目的地的呢?二分法悖论只是空谷传音般放大了问题。若想妥善解决这个问题,还得靠物质、时间和空间是否无限可分等等这些20世纪的衍生理论。