主页 > 型号大全 > 正文

c型钢型号带钢选用表(c 型钢的型号)

2024-04-14 21:09:49 来源:阿帮个性网 点击:
文章目录导航:
  1. c型钢型号表示
  2. c 型钢的型号
  3. c型钢规格型号表
  4. c型钢规格大全
  5. c型钢规格有哪些
  6. c型钢型号表示方法
  7. c型钢规格型号及技术参数
  8. c型钢规格型号尺寸大全

c型钢型号表示

标注图如下:

常规C型钢国家标准规格表(未列规格也可订做):

型号    尺寸(mm)(毫米) 截面积 理论重量

       h高度 b底边 a t厚度 cm2  kg/m(公斤/米)

C100 100      50 15 2.5      5.5          4.32

C120 120      50 20 2.5      6.25    4.91

C120 120      60 20 3.0      8.04    6.31

C160 160      70 20 3.0      9.84    7.72

C180 180      70 20 3.0      10.44   8.20

C200 200      70 20 3.0      11.04   8.67

C220 220      70 20 3.0      11.64   9.14

C240 240      100 20 3.0  12.24   9.61

C260 260      100 20 3.0  12.84   10.08

c 型钢的型号

C型钢檩条按高度不同分为80、100、120、140、160五种规格,长度可以根据工程设计而确定,但考虑到运输和安装等条件,全长一般不超过12米。各行数字含义(以C80×40x20×2.5为例):  C80×40x20×2.5:  截面高度H=80mm;  截面宽度B=40mm;  卷边宽度C=20mm;  厚度t=2.5mm;

c型钢规格型号表

断面尺寸

Section

size

C型钢

Z型钢

厚度(mm)

100*40*20

100*40*20

1.6-3.2

120*50*20

120*50*20

1.6-3.2

120*60*20

120*60*20

1.6-3.2

140*50*20

140*50*20

1.6-3.2

140*60*20

140*60*20

1.6-3.2

160*60*20

160*60*20

1.6-3.2

180*70*20

180*70*20

1.6-3.2

200*70*20

200*70*20

1.6-3.2

220*75*20

220*75*20

1.6-3.2

240*80*20

240*80*20

1.6-3.2

250*80*20

250*80*20

1.6-3.2

260*80*20

260*80*20

1.6-3.2

280*100*20

280*100*20

1.6-3.2

300*100*20

300*100*20

1.6-3.2

320*100*20

320*100*20

1.6-3.2

350*120*20

350*120*20

1.6-3.2

我们上海栎桉金属材料有限公司的机器是可以调节的,

在此范围内的规格都可以生产,版面有限,大量规格未能一一列出.

02156780499

c型钢规格大全

这要看腰高和小边是多少才能算阿!比如C160*50*20*厚度用160+100+15=275如有疑问加QQ845114439

c型钢规格有哪些

   在住房和城乡建设部工程质量安全监管司的组织和指导下,由中国建筑科学研究院牵头编制的《建筑业10项新技术(2017版)》(以下简称“2017版”)10月25日正式颁布。2017版共包括10个大项、107项技术。这也是继1994版、1998版、2005版和2010版之后的第五次改版升级。

为促进建筑产业升级,加快建筑业技术进步,住房和城乡建设部工程质量安全监管司组织国内建筑行业百余位专家,对《建筑业10项新技术(2010)》进行了全面修订。

本文件与2010年版相比主要变化如下:

——将“混凝土技术”和“钢筋及预应力技术”合并为“钢筋与混凝土技术”。

——新增装配式混凝土结构技术。

——将“防水技术”扩充为“防水技术与围护结构节能”技术。

——升级更新绿色建筑、建筑防灾减灾、建筑节能、建筑信息化等相关内容。

——适用范围以建筑工程应用为主,每项技术具有一定适用性、成熟性与可推广性。

4装配式混凝土结构技术

4.1装配式混凝土剪力墙结构技术

4.1.1技术内容

装配式混凝土剪力墙结构是指全部或部分采用预制墙板构件,通过可靠的连接方式后浇混凝土、水泥基灌浆料形成整体的混凝土剪力墙结构。这是近年来在我国应用最多、发展最快的装配式混凝土结构技术。

国内的装配式剪力墙结构体系主要包括:

(1)高层装配整体式剪力墙结构。该体系中,部分或全部剪力墙采用预制构件,预制剪力墙之间的竖向接缝一般位于结构边缘构件部位,该部位采用现浇方式与预制墙板形成整体,预制墙板的水平钢筋在后浇部位实现可靠连接或锚固;预制剪力墙水平接缝位于楼面标高处,水平接缝处钢筋可采用套筒灌浆连接、浆锚搭接连接或在底部预留后浇区内搭接连接的形式。在每层楼面处设置水平后浇带并配置连续纵向钢筋,在屋面处应设置封闭后浇圈梁。采用叠合楼板及预制楼梯,预制或叠合阳台板。该结构体系主要用于高层住宅,整体受力性能与现浇剪力墙结构相当,按“等同现浇”设计原则进行设计。

(2)多层装配式剪力墙结构。与高层装配整体式剪力墙结构相比,结构计算可采用弹性方法进行结构分析,并可按照结构实际情况建立分析模型,以建立适用于装配特点的计算与分析方法。在构造连接措施方面,边缘构件设置及水平接缝的连接均有所简化,并降低了剪力墙及边缘构件配筋率、配箍率要求,允许采用预制楼盖和干式连接的做法。

4.1.2技术指标

高层装配整体式剪力墙结构和多层装配式剪力墙结构的设计应符合国家现行标准《装配式混凝土结构技术规程》JGJ1和《装配式混凝土建筑技术标准》GB/T51231中的规定。《装配式混凝土结构技术规程》JGJ1、《装配式混凝土建筑技术标准》GB/T51231中将装配整体式剪力墙结构的最大适用高度比现浇结构适当降低。装配整体式剪力墙结构的高宽比限值,与现浇结构基本一致。

作为混凝土结构的一种类型,装配式混凝土剪力墙结构在设计和施工中应该符合现行国家标准《混凝土结构设计规范》GB50010、《混凝土结构施工规范》GB50666、《混凝土结构工程施工质量验收规范》GB50204中各项基本规定;若房屋层数为10层及10层以上或者高度大于28m,还应该参照《高层建筑混凝土结构技术规程》JGJ3中关于剪力墙结构的一般性规定。

针对装配式混凝土剪力墙结构的特点,结构设计中还应该注意以下基本概念:

(1)应采取有效措施加强结构的整体性。装配整体式剪力墙结构是在选用可靠的预制构件受力钢筋连接技术的基础上,采用预制构件与后浇混凝土相结合的方法,通过连接节点的合理构造措施,将预制构件连接成一个整体,保证其具有与现浇混凝土结构基本等同的承载能力和变形能力,达到与现浇混凝土结构等同的设计目标。其整体性主要体现在预制构件之间、预制构件与后浇混凝土之间的连接节点上,包括接缝混凝土粗糙面及键槽的处理、钢筋连接锚固技术、各类附加钢筋、构造钢筋等。

(2)装配式混凝土结构的材料宜采用高强钢筋与适宜的高强混凝土。预制构件在工厂生产,混凝土构件可实现蒸汽养护,对于混凝土的强度、抗冻性及耐久性有显著提升,方便高强混凝土技术的采用,且可以提早脱模提高生产效率;采用高强混凝土可以减小构件截面尺寸,便于运输吊装。采用高强钢筋,可以减少钢筋数量,简化连接节点,便于施工,降低成本。

(3)装配式结构的节点和接缝应受力明确、构造可靠,一般采用经过充分的力学性能试验研究、施工工艺试验和实际工程检验的节点做法。节点和接缝的承载力、延性和耐久性等一般通过对构造、施工工艺等的严格要求来满足,必要时单独对节点和接缝的承载力进行验算。若采用相关标准、图集中均未涉及的新型节点连接构造,应进行必要的技术研究与试验验证。

(4)装配整体式剪力墙结构中,预制构件合理的接缝位置、尺寸及形状的设计是十分重要的,应以模数化、标准化为设计工作基本原则。接缝对建筑功能、建筑平立面、结构受力状况、预制构件承载能力、制作安装、工程造价等都会产生一定的影响。设计时应满足建筑模数协调、建筑物理性能、结构和预制构件的承载能力、便于施工和进行质量控制等多项要求。

4.1.3适用范围

适用于抗震设防烈度为6~8度区,装配整体式剪力墙结构可用于高层居住建筑,多层装配式剪力墙结构可用于低、多层居住建筑。

4.1.4工程案例

北京万科新里程、北京金域缇香高层住宅、北京金域华府019地块住宅、合肥滨湖桂园6号、8~11号楼住宅、合肥市包河公租房1~5号楼住宅、海门中南世纪城96~99号楼公寓等。

4.2装配式混凝土框架结构技术

4.2.1技术内容

装配式混凝土框架结构包括装配整体式混凝土框架结构及其他装配式混凝土框架结构。装配式整体式框架结构是指全部或部分框架梁、柱采用预制构件通过可靠的连接方式装配而成,连接节点处采用现场后浇混凝土、水泥基灌浆料等将构件连成整体的混凝土结构。其他装配式框架主要指各类干式连接的框架结构,主要与剪力墙、抗震支撑等配合使用。

装配整体式框架结构可采用与现浇混凝土框架结构相同的方法进行结构分析,其承载力极限状态及正常使用极限状态的作用效应可采用弹性分析方法。在结构内力与位移计算时,对现浇楼盖和叠合楼盖,均可假定楼盖在其平面为无限刚性。装配整体式框架结构构件和节点的设计均可按与现浇混凝土框架结构相同的方法进行,此外,尚应对叠合梁端竖向接缝、预制柱柱底水平接缝部位进行受剪承载力验算,并进行预制构件在短暂设计状况下的验算。装配整体式框架结构中,应通过合理的结构布置,避免预制柱的水平接缝出现拉力。

装配整体式框架主要包括框架节点后浇和框架节点预制两大类:前者的预制构件在梁柱节点处通过后浇混凝土连接,预制构件为一字形;而后者的连接节点位于框架柱、框架梁中部,预制构件有十字形、T形、一字形等并包含节点,由于预制框架节点制作、运输、现场安装难度较大,现阶段工程较少采用。

装配整体式框架结构连接节点设计时,应合理确定梁和柱的截面尺寸以及钢筋的数量、间距及位置等,钢筋的锚固与连接应符合国家现行标准相关规定,并应考虑构件钢筋的碰撞问题以及构件的安装顺序,确保装配式结构的易施工性。装配整体式框架结构中,预制柱的纵向钢筋可采用套筒灌浆、机械冷挤压等连接方式。当梁柱节点现浇时,叠合框架梁纵向受力钢筋应伸入后浇节点区锚固或连接,其下部的纵向受力钢筋也可伸至节点区外的后浇段内进行连接。当叠合框架梁采用对接连接时,梁下部纵向钢筋在后浇段内宜采用机械连接、套筒灌浆连接或焊接等连接形式连接。叠合框架梁的箍筋可采用整体封闭箍筋及组合封闭箍筋形式。

4.2.2技术指标

装配式框架结构的构件及结构的安全性与质量应满足国家现行标准《装配式混凝土结构技术规程》JGJ12014、《装配式混凝土建筑技术标准》GB/T51231、《混凝土结构设计规范》GB50010、《混凝土结构工程施工规范》GB50666、《混凝土结构工程施工质量验收规范》GB50204以及《预制预应力混凝土装配整体式框架结构技术规程》JGJ224等的有关规定。当采用钢筋机械连接技术时,应符合现行行业标准《钢筋机械连接应用技术规程》JGJ107的规定;当采用钢筋套筒灌浆连接技术时,应符合现行行业标准《钢筋套筒灌浆连接应用技术规程》JGJ355的规定;当钢筋采用锚固板的方式锚固时,应符合现行行业标准《钢筋锚固板应用技术规程》JGJ256的规定。

装配整体式框架结构的关键技术指标如下:

(1)装配整体式框架结构房屋的最大适用高度与现浇混凝土框架结构基本相同。

(2)装配式混凝土框架结构宜采用高强混凝土、高强钢筋,框架梁和框架柱的纵向钢筋尽量选用大直径钢筋,以减少钢筋数量,拉大钢筋间距,有利于提高装配施工效率,保证施工质量,降低成本。

(3)当房屋高度大于12m或层数超过3层时,预制柱宜采用套筒灌浆连接,包括全灌浆套筒和半灌浆套筒。矩形预制柱截面宽度或圆形预制柱直径不宜小于400mm,且不宜小于同方向梁宽的1.5倍;预制柱的纵向钢筋在柱底采用套筒灌浆连接时,柱箍筋加密区长度不应小于纵向受力钢筋连接区域长度与500mm之和;当纵向钢筋的混凝土保护层厚度大于50mm时,宜采取增设钢筋网片等措施,控制裂缝宽度以及在受力过程中的混凝土保护层剥离脱落。当采用叠合框架梁时,后浇混凝土叠合层厚度不宜小于150mm,抗震等级为一、二级叠合框架梁的梁端箍筋加密区宜采用整体封闭箍筋。

(4)采用预制柱及叠合梁的装配整体式框架中,柱底接缝宜设置在楼面标高处,且后浇节点区混凝土上表面应设置粗糙面。柱纵向受力钢筋应贯穿后浇节点区,柱底接缝厚度为20mm,并应用灌浆料填实。装配式框架节点中,包括中间层中节点、中间层端节点、顶层中节点和顶层端节点,框架梁和框架柱的纵向钢筋的锚固和连接可采用与现浇框架结构节点的方式,对于顶层端节点还可采用柱伸出屋面并将柱纵向受力钢筋锚固在伸出段内的方式。

4.2.3适用范围

装配整体式混凝土框架结构可用于6度至8度抗震设防地区的公共建筑、居住建筑以及工业建筑。除8度(0.3g)外,装配整体式混凝土结构房屋的最大适用高度与现浇混凝土结构相同。其他装配式混凝土框架结构,主要适用于各类低多层居住、公共与工业建筑。

4.2.4工程案例

中建国际合肥住宅工业化研发及生产基地项目配套综合楼、南京万科上坊保障房项目、南京万科九都荟、乐山市第一职业高中实训楼、沈阳浑南十二运安保中心、沈阳南科财富大厦、海门老年公寓、上海颛桥万达广场、上海临港重装备产业区H36-02地块项目等。

4.3混凝土叠合楼板技术

4.3.1技术内容

混凝土叠合楼板技术是指将楼板沿厚度方向分成两部分,底部是预制底板,上部后浇混凝土叠合层。配置底部钢筋的预制底板作为楼板的一部分,在施工阶段作为后浇混凝土叠合层的模板承受荷载,与后浇混凝土层形成整体的叠合混凝土构件。

混凝土叠合楼板按具体受力状态,分为单向受力和双向受力叠合板;预制底板按有无外伸钢筋可分为“有胡子筋”和“无胡子筋”;拼缝按照连接方式可分为分离式接缝(即底板间不拉开的“密拼”)和整体式接缝(底板间有后浇混凝土带)。

预制底板按照受力钢筋种类可以分为预制混凝土底板和预制预应力混凝土底板:预制混凝土底板采用非预应力钢筋时,为增强刚度目前多采用桁架钢筋混凝土底板;预制预应力混凝土底板可为预应力混凝土平板和预应力混凝土带肋板、预应力混凝土空心板。

跨度大于3m时预制底板宜采用桁架钢筋混凝土底板或预应力混凝土平板,跨度大于6m时预制底板宜采用预应力混凝土带肋底板、预应力混凝土空心板,叠合楼板厚度大于180mm时宜采用预应力混凝土空心叠合板。

保证叠合面上下两侧混凝土共同承载、协调受力是预制混凝土叠合楼板设计的关键,一般通过叠合面的粗糙度以及界面抗剪构造钢筋实现。

施工阶段是否设置可靠支撑决定了叠合板的设计计算方法。设置可靠支撑的叠合板,预制构件在后浇混凝土重量及施工荷载下,不至于发生影响内力的变形,按整体受弯构件设计计算;无支撑的叠合板,二次成形浇筑混凝土的重量及施工荷载影响了构件的内力和变形,应按二阶段受力的叠合构件进行设计计算。

4.3.2技术指标

(1)预制混凝土叠合楼板的设计及构造要求应符合国家现行标准《混凝土结构设计规范》GB50010、《装配式混凝土结构技术规程》JGJ1、《装配式混凝土建筑技术标准》GB/T51231的相关要求;预制底板制作、施工及短暂设计状况设计应符合《混凝土结构施工规范》GB50066的相关要求;施工验收应符合《混凝土结构工程施工质量验收规范》GB50204的相关要求。

(2)相关国家建筑标准设计图集包括《桁架钢筋混凝土叠合板(60mm厚底板)》15G366-1、《预制带肋底板混凝土叠合板》14G443、《预应力混凝土叠合板(50mm、60mm实心底板)》06SG439-1。

(3)预制混凝土底板的混凝土强度等级不宜低于C30;预制预应力混凝土底板的混凝土强度等级不宜低于C40,且不应低于C30;后浇混凝土叠合层的混凝土强度等级不宜低于C25。

(4)预制底板厚度不宜小于60mm,后浇混凝土叠合层厚度不应小于60mm。

(5)预制底板和后浇混凝土叠合层之间的结合面应设置粗糙面,其面积不宜小于结合面的80%,凹凸深度不应小于4mm;设置桁架钢筋的预制底板,设置自然粗糙面即可。

(6)预制底板跨度大于4m,或用于悬挑板及相邻悬挑板上部纵向钢筋在在悬挑层内锚固时,应设置桁架钢筋或设置其他形式的抗剪构造钢筋。

(7)预制底板采用预制预应力底板时,应采取控制反拱的可靠措施。

4.3.3适用范围

各类房屋中的楼盖结构,特别适用于住宅及各类公共建筑。

4.3.4工程案例

京投万科新里程、金域华府、宝业万华城、上海城建浦江基地五期经济适用房、合肥蜀山公租房、沈阳地铁惠生新城、深港新城产业化住宅等。

4.4预制混凝土外墙挂板技术

4.4.1技术内容

预制混凝土外墙挂板是安装在主体结构上,起围护、装饰作用的非承重预制混凝土外墙板,简称外墙挂板。外墙挂板按构件构造可分为钢筋混凝土外墙挂板、预应力混凝土外墙挂板两种形式;按与主体结构连接节点构造可分为点支承连接、线支承连接两种形式;按保温形式可分为无保温、外保温、夹心保温等三种形式;按建筑外墙功能定位可分为围护墙板和装饰墙板。各类外墙挂板可根据工程需要与外装饰、保温、门窗结合形成一体化预制墙板系统。

预制混凝土外墙挂板可采用面砖饰面、石材饰面、彩色混凝土饰面、清水混凝土饰面、露骨料混凝土饰面及表面带装饰图案的混凝土饰面等类型外墙挂板,可使建筑外墙具有独特的表现力。

预制混凝土外墙挂板在工厂采用工业化方式生产,具有施工速度快、质量好、维修费用低的优点,主要包括预制混凝土外墙挂板(建筑和结构)设计技术、预制混凝土外墙挂板加工制作技术和预制混凝土外墙挂板安装施工技术。

4.4.2技术指标

支承预制混凝土外墙挂板的结构构件应具有足够的承载力和刚度,民用外墙挂板仅限跨越一个层高和一个开间,厚度不宜小于100mm,混凝土强度等级不低于C25,主要技术指标如下:

(1)结构性能应满足现行国家标准《混凝土结构设计规范》GB50010和《混凝土结构工程施工质量验收规范》GB50204要求;

(2)装饰性能应满足现行国家标准《建筑装饰装修工程质量验收规范》GB50210要求;

(3)保温隔热性能应满足设计及现行行业标准《民用建筑节能设计标准》JGJ26要求;

(4)抗震性能应满足国家现行标准《装配式混凝土结构技术规规程》JGJ12014、《装配式混凝土建筑技术标准》GB/T51231要求。与主体结构采用柔性节点连接,地震时适应结构层间变位性能好,抗震性能满足抗震设防烈度为8度的地区应用要求。

(5)构件燃烧性能及耐火极限应满足现行国家标准《建筑防火设计规范》GB50016的要求。

(6)作为建筑围护结构产品定位应与主体结构的耐久性要求一致,即不应低于50年设计使用年限,饰面装饰(涂料除外)及预埋件、连接件等配套材料耐久性设计使用年限不低于50年,其他如防水材料、涂料等应采用10年质保期以上的材料,定期进行维护更换。

(7)外墙挂板防水性能与有关构造应符合国家现行有关标准的规定,并符合《10项新技术》第8.6节有关规定。

4.4.3适用范围

预制混凝土外挂墙板适用于工业与民用建筑的外墙工程,可广泛应用于混凝土框架结构、钢结构的公共建筑、住宅建筑和工业建筑中。

4.4.4工程案例

国家网球中心、奥运会射击馆、(北京)中建技术中心实验楼、(北京)软通动力研发楼、北京昌平轻轨站、国家图书馆二期、河北怀来迦南葡萄酒厂、大连IBM办公楼、苏州天山厂房、威海名座、武汉琴台文化艺术中心、安慧千伏变电站、拉萨火车站;杭州奥体中心体育游泳馆、扬州体育公园体育场、济南万科金域国际、天津万科东丽湖。

4.5夹心保温墙板技术

4.5.1技术内容

三明治夹心保温墙板(简称“夹心保温墙板”)是指把保温材料夹在两层混凝土墙板(内叶墙、外叶墙)之间形成的复合墙板,可达到增强外墙保温节能性能,减小外墙火灾危险,提高墙板保温寿命从而减少外墙维护费用的目的。夹心保温墙板一般由内叶墙、保温板和拉接件和外叶墙组成,形成类似于三明治的构造形式,内叶墙和外叶墙一般为钢筋混凝土材料,保温板一般为B1或B2级有机保温材料,拉接件一般为FRP高强复合材料或不锈钢材质。夹心保温墙板可广泛应用于预制墙板或现浇墙体中,但预制混凝土外墙更便于采用夹心保温墙板技术。

根据夹心保温外墙的受力特点,可分为非组合夹心保温外墙、组合夹心保温外墙和部分组合夹心保温外墙。其中非组合夹心保温外墙内外叶混凝土受力相互独立,易于计算和设计,可适用于各种高层建筑的剪力墙和围护墙;组合夹心保温外墙的内外叶混凝土需要共同受力,一般只适用于单层建筑的承重外墙或作为围护墙;部分组合夹心保温外墙的受力介于组合和非组合之间,受力非常复杂,计算和设计难度较大,其应用方法及范围有待进一步研究。

非组合夹心墙板一般由内叶墙承受所有的荷载作用,外叶墙起到保温材料的保护层作用,两层混凝土之间可以产生微小的相互滑移,保温拉接件对外叶墙的平面内变形约束较小,可以释放外叶墙在温差作用下的产生的温度应力,从而避免外叶墙在温度作用下产生开裂,使得外叶墙、保温板与内叶墙和结构同寿命。我国装配混凝土结构预制外墙主要采用的是非组合夹心墙板。

夹心保温墙板中的保温拉接件布置应综合考虑墙板生产、施工和正常使用工况下的受力安全和变形影响。

4.5.2技术指标

夹心保温墙板的设计应该与建筑结构同寿命,墙板中的保温拉接件应具有足够的承载力和变形性能。非组合夹心墙板应遵循“外叶墙混凝土在温差变化作用下能够释放温度应力,与内叶墙之间能够形成微小的自由滑移”的设计原则。

对于非组合夹心保温外墙的拉接件在与混凝土共同工作时,承载力安全系数应满足以下要求:对于抗震设防烈度为7度、8度地区,考虑地震组合时安全系数不小于3.0,不考虑地震组合时安全系数不小于4.0;对于9度及以上地区,必须考虑地震组合,承载力安全系数不小于3.0。

非组合夹心保温墙板的外叶墙在自重作用下垂直位移应控制在一定范围内,内、外叶墙之间不得有穿过保温层的混凝土连通桥。

夹心保温墙板的热工性能应满足节能计算要求。拉结件本身应满足力学、锚固及耐久等性能要求,拉结件的产品与设计应用应符合国家现行有关标准的规定。

4.5.3适用范围

适用于高层及多层装配式剪力墙结构外墙、高层及多层装配式框架结构非承重外墙挂板、高层及多层钢结构非承重外墙挂板等外墙形式,可用于各类居住与公共建筑。

4.5.4工程案例

北京万科中粮假日风景、天津万科东丽湖项目、沈阳地铁开发公司凤凰新城、沈阳地铁开发公司惠生小区及惠民小区、北京郭公庄保障房项目、北京旧宫保障房、济南西区济水上苑17#楼、济南港兴园保障房、中建科技武汉新洲区阳逻深港新城、合肥宝业润园项目、上海保利置业南大项目、长沙三一保障房项目、乐山华构办公楼、天津远大北京实创基地公租房等。

4.6叠合剪力墙结构技术

4.6.1技术内容

叠合剪力墙结构是指采用两层带格构钢筋(桁架钢筋)的预制墙板,现场安装就位后,在两层板中间浇筑混凝土,辅以必要的现浇混凝土剪力墙、边缘构件、楼板,共同形成的叠合剪力墙结构。在工厂生产预制构件时,设置桁架钢筋,既可作为吊点,又增加平面外刚度,防止起吊时开裂。在使用阶段,桁架钢筋作为连接墙板的两层预制片与二次浇筑夹心混凝土之间的拉接筋,可提高结构整体性能和抗剪性能。同时,这种连接方式区别于其他装配式结构体系,板与板之间无拼缝,无需做拼缝处理,防水性好。

利用信息技术,将叠合式墙板和叠合式楼板的生产图纸转化为数据格式文件,直接传输到工厂主控系统读取相关数据,并通过全自动流水线,辅以机械支模手进行构件生产,所需人工少,生产效率高,构件精度达毫米级。同时,构件形状可自由变化,在一定程度上解决了“模数化限制”的问题,突破了个性化设计与工业化生产的矛盾。

4.6.2技术指标

叠合剪力墙结构采用与现浇剪力墙结构相同的方法进行结构分析与设计,其主要力学技术指标与现浇混凝土结构相同,但当同一层内既有预制又有现浇抗侧力构件时,地震设计状况下宜对现浇水平抗侧力构件在地震作用下的弯矩和剪力乘以不小于1.1的增大系数。高层叠合剪力墙结构其建筑高度、规则性、结构类型应满足现行国家标准《装配式混凝土建筑技术标准》GB/T51231等规范标准要求。

结构与构件的设计应满足国家现行标准《建筑结构荷载规范》GB50009、《建筑抗震设计规范》GB50011、《混凝土结构设计规范》GB50010和《装配式混凝土建筑技术标准》GB/T51231等现行国家、行业规范标准要求。

4.6.3适用范围

适用于抗震设防烈度为6~8度的多层、高层建筑,包含工业与民用建筑。除了地上,本技术结构体系具有良好的整体性和防水性能,还适用于地下工程,包含地下室、地下车库、地下综合管廊等。

4.6.4工程案例

青浦爱多邦、万华城23号楼、上海地产曹路保障房、袍江保障房、滨湖润园、南岗第二公租房、滨湖桂园保障房、新站区公租房、天门湖公租房、经开区出口加工区公租房、合肥保障试验楼、1号试验楼、蚌埠大禹家园等;南翔星信综合体、中纺CBD商业中心、之江学院等;顺园大规模地下车库、青年城半地下车库、滨湖康园地下车库、临湖二期地下人防等。

4.7预制预应力混凝土构件技术

4.7.1技术内容

预制预应力混凝土构件是指通过工厂生产并采用先张预应力技术的各类水平和竖向构件,其主要包括:预制预应力混凝土空心板、预制预应力混凝土双T板、预制预应力梁以及预制预应力墙板等。各类预制预应力水平构件可形成装配式或装配整体式楼盖,空心板、双T板可不设后浇混凝土层,也可根据使用要求与结构受力要求设置后浇混凝土层。预制预应力梁可为叠合梁,也可为非叠合梁。预制预应力墙板可应用与各类公共建筑与工业建筑中。

预制预应力混凝土构件的优势在于采用高强预应力钢丝、钢绞线,可以节约钢筋和混凝土用量,并降低楼盖结构高度,施工阶段普遍不设支撑而节约支模费用,综合经济效益显著。预制预应力混凝土构件组成的楼盖具有承载能力大,整体性好,抗裂度高等优点,完全符合“四节一环保”的绿色施工标准,以及建筑工业化的发展要求。预制预应力技术可增加墙板的长度,有利于实现多层一墙板。

4.7.2技术指标

(1)预应力混凝土空心板的标志宽度为1.2m,也有0.6m、0.9m等其他宽度;标准板高100mm、120mm、150mm、180mm、200mm、250mm、300mm、380mm等;不同截面高度能够满足的板轴跨度为3~18m。

(2)预应力混凝土双T板包括双T坡板和双T平板,坡板的标志宽度2.4m、3.0m等,坡板的标志跨度9m、12m、15m、18m、21m、24m等;平板的标志跨度2.0m、2.4m、3.0m等,平板的标志跨度9m、12m、15m、18m、21m、24m等。

(3)预应力混凝土梁跨度根据工程实际确定,在工业建筑中多为6m、7.5m、9m跨度。

(4)预应力混凝土墙板多为固定宽度(1.5m、2.0m、3.0m等),长度根据柱距或层高确定。

根据工程需要,也可采用非标跨度、宽度的构件,采用单独设计的方法即可。

预制预应力混凝土板的生产、安装、施工应满足国家现行标准《混凝土结构设计规范》GB50010,《混凝土结构工程施工质量验收规范》GB50204,《装配式混凝土结构技术规程》JGJ1的有关规定。工程应用可执行《预应力混凝土圆孔板》03SG435-1~2,《SP预应力空心板》05SG408,《预应力混凝土双T板》06SG432-1、09SG432-2、08SG432-3,《大跨度预应力空心板(跨度4.2m~18.0m)》13G440等国家建筑标准设计图集,直接选用预制构件,也可根据工程情况单独设计。

4.7.3适用范围

广泛适用于各类工业与民用建筑中。预应力混凝土空心板可用于混凝土结构、钢结构建筑中的楼盖与外墙挂板,预应力混凝土双T板多用于公共建筑、工业建筑的楼盖、屋盖,其中双T坡板仅用于屋盖,9m以内跨度楼盖,可采用预应力空心板(SP板)+后浇叠合层的叠合楼盖,9m以内的超重载及9m以上的楼盖,采用预应力混凝土双T板+后浇叠合层的叠合楼盖。预制预应力梁截面可为矩形、花篮梁或L形、倒T形,便于与预应力混凝土双T板和空心板连接。

4.7.4工程案例

青岛鼎信通讯科技产业园厂房,采用重载双T板叠合楼盖;乐山市第一职业高中实训楼,采用预制预应力空心板楼盖。

4.8钢筋套筒灌浆连接技术

4.8.1技术内容

钢筋套筒灌浆连接技术是指带肋钢筋插入内腔为凹凸表面的灌浆套筒,通过向套筒与钢筋的间隙灌注专用高强水泥基灌浆料,灌浆料凝固后将钢筋锚固在套筒内实现针对预制构件的一种钢筋连接技术。该技术将灌浆套筒预埋在混凝土构件内,在安装现场从预制构件外通过注浆管将灌浆料注入套筒,来完成预制构件钢筋的连接,是预制构件中受力钢筋连接的主要形式,主要用于各种装配整体式混凝土结构的受力钢筋连接。

钢筋套筒灌浆连接接头由钢筋、灌浆套筒、灌浆料三种材料组成,其中灌浆套筒分为半灌浆套筒和全灌浆套筒,半灌浆套筒连接的接头一端为灌浆连接,另一端为机械连接。

钢筋套筒灌浆连接施工流程主要包括:预制构件在工厂完成套筒与钢筋的连接、套筒在模板上的安装固定和进出浆管道与套筒的连接,在建筑施工现场完成构件安装、灌浆腔密封、灌浆料加水拌合及套筒灌浆。

竖向预制构件的受力钢筋连接可采用半灌浆套筒或全灌浆套筒。构件宜采用联通腔灌浆方式,并应合理划分连通腔区域。构件也可采用单个套筒独立灌浆,构件就位前水平缝处应设置坐浆层。套筒灌浆连接应采用由经接头型式检验确认的与套筒相匹配的灌浆料,使用与材料工艺配套的灌浆设备,以压力灌浆方式将灌浆料从套筒下方的进浆孔灌入,从套筒上方出浆孔流出,及时封堵进出浆孔,确保套筒内有效连接部位的灌浆料填充密实。

水平预制构件纵向受力钢筋在现浇带处连接可采用全灌浆套筒连接。套筒安装到位后,套筒注浆孔和出浆孔应位于套筒上方,使用单套筒灌浆专用工具或设备进行压力灌浆,灌浆料从套筒一端进浆孔注入,从另一端出浆口流出后,进浆、出浆孔接头内灌浆料浆面均应高于套筒外表面最高点。

套筒灌浆施工后,灌浆料同条件养护试件的抗压强度达到35MPa后,方可进行对接头有扰动的后续施工。

4.8.2技术指标

钢筋套筒灌浆连接技术的应用须满足国家现行标准《装配式混凝土技术规程》JGJ1、《钢筋套筒灌浆连接应用技术规程》JGJ355和《装配式混凝土建筑技术标准》GB/T51231的相关规定。钢筋套筒灌浆连接的传力机理比传统机械连接更复杂,《钢筋套筒灌浆连接应用技术规程》JGJ355对钢筋套筒灌浆连接接头性能、型式检验、工艺检验、施工与验收等进行了专门要求。

灌浆套筒按加工方式分为铸造灌浆套筒和机械加工灌浆套筒。铸造灌浆套筒宜选用球墨铸铁,机械加工套筒宜选用优质碳素结构钢、低合金高强度结构钢、合金结构钢或其它经过接头型式检验确定符合要求的钢材。

灌浆套筒的设计、生产和制造应符合现行行业标准《钢筋连接用灌浆套筒》JG/T398的相关规定,专用水泥基灌浆料应符合现行行业标准《钢筋连接用套筒灌浆料》JG/T408的各项要求。当采用其他材料的灌浆套筒时,套筒性能指标应符合有关产品标准的规定。

套筒材料主要性能指标:球墨铸铁灌浆套筒的抗拉强度不小于550MPa,断后伸长率不小于5%,球化率不小于85%;各类钢制灌浆套筒的抗拉强度不小于600MPa,屈服强度不小于355MPa,断后伸长率不小于16%;其他材料套筒符合有关产品标准要求。

灌浆料主要性能指标:初始流动度不小300mm,30min流动度不小于260mm,1d抗压强度不小于35MPa,28d抗压强度不小于85MPa。

套筒材料在满足断后伸长率等指标要求的情况下,可采用抗拉强度超过600MPa(如900MPa、1000MPa)的材料,以减小套筒壁厚和外径尺寸,也可根据生产工艺采用其他强度的钢材。灌浆料在满足流动度等指标要求的情况下,可采用抗压强度超过85MPa(如110MPa、130MPa)的材料,以便于连接大直径钢筋、高强钢筋和缩短灌浆套筒长度。

4.8.3适用范围

本技术适用于装配整体式混凝土结构中直径12~40mm的HRB400、HRB500钢筋的连接,包括:预制框架柱和预制梁的纵向受力钢筋、预制剪力墙竖向钢筋等的连接,也可用于既有结构改造现浇结构竖向及水平钢筋的连接。

4.8.4工程案例

北京长阳半岛、紫云家园、长阳天地、金域华府、沈阳春河里、沈阳十二运安保中心、南科财富大厦、华润紫云府、万科铁西蓝山、长春一汽技术中心停车楼、大连万科城、南京上坊青年公寓、万科九都荟、合肥蜀山四期公租房、庐阳湖畔新城、上海佘北大型居住社区、青浦新城、浦东新区民乐大型居住社区、龙信老年公寓、龙信广场、中南世纪城、成都锦丰新城、西安兴盛家园、乌鲁木齐龙禧佳苑、福建建超工业化楼等。

4.9装配式混凝土结构建筑信息模型应用技术

4.9.1技术内容

利用建筑信息模型(BIM)技术,实现装配式混凝土结构的设计、生产、运输、装配、运维的信息交互和共享,实现装配式建筑全过程一体化协同工作。应用BIM技术,装配式建筑、结构、机电、装饰装修全专业协同设计,实现建筑、结构、机电、装修一体化;设计BIM模型直接对接生产、施工,实现设计、生产、施工一体化。

4.9.2技术指标

建筑信息模型(BIM)技术指标主要有支撑全过程BIM平台技术、设计阶段模型精度、各类型部品部件参数化程度、构件标准化程度、设计直接对接工厂生产系统CAM技术、以及基于BIM与物联网技术的装配式施工现场信息管理平台技术。装配式混凝土结构设计应符合国家现行标准《装配式混凝土建筑技术标准》GB/T51231、《装配式混凝土结构技术规程》JGJ1和《混凝土结构设计规范》GB50010等的有关要求,也可选用《预制混凝土剪力墙外墙板》15G365-1、《预制钢筋混凝土阳台板、空调板及女儿墙》15G368-1等国家建筑标准设计图集。

除上述各项规定外,针对建筑信息模型技术的特点,在装配式建筑全过程BIM技术应用还应注意以下关键技术内容:

(1)搭建模型时,应采用统一标准格式的各类型构件文件,且各类型构件文件应按照固定、规范的插入方式,放置在模型的合理位置。

(2) 预制构件出图排版阶段,应结合构件类型和尺寸,按照相关图集要求进项图纸排版,尺寸标注、辅助线段和文字说明,采用统一标准格式,并满足现行国家标准《建筑制图标准》GB/T50104和《建筑结构制图标准》GB/T50105。

(4) 应用“BIM+物联网+GPS”技术,进行装配式预制构件运输过程追溯管理、施工现场可视化指导堆放、吊装等,实现装配式建筑可视化施工现场信息管理平台。

4.9.3适用范围

装配式剪力墙结构:预制混凝土剪力墙外墙板,预制混凝土剪力墙叠合板板,预制钢筋混凝土阳台板、空调板及女儿墙等构件的深化设计、生产、运输与吊装。

装配式框架结构:预制框架柱、预制框架梁、预制叠合板、预制外挂板等构件的深化设计、生产、运输与吊装。

异形构件的深化设计、生产、运输与吊装。异形构件分为结构形式异形构件和非结构形式异形构件,结构形式异形构件包括有坡屋面、阳台等;非结构形式异形构件有排水檐沟、建筑造型等。

4.9.4工程案例

北京三星中心商业金融项目、五和万科长阳天地项目、合肥湖畔新城复建点项目、北京天竺万科中心项目、成都青白江大同集中安置房项目、清华苏世民书院项目、中建海峡(闽清)绿色建筑科技产业园综合楼项目、北京门头沟保障性自住商品房项目等。

4.10预制构件工厂化生产加工技术

4.10.1技术内容

预制构件工厂化生产加工技术,指采用自动化流水线、机组流水线、长线台座生产线生产标准定型预制构件并兼顾异型预制构件,采用固定台模线生产房屋建筑预制构件,满足预制构件的批量生产加工和集中供应要求的技术。

工厂化生产加工技术包括预制构件工厂规划设计、各类预制构件生产工艺设计、预制构件模具方案设计及其加工技术、钢筋制品机械化加工和成型技术、预制构件机械化成型技术、预制构件节能养护技术以及预制构件生产质量控制技术。

非预应力混凝土预制构件生产技术涵盖混凝土技术、钢筋技术、模具技术、预留预埋技术、浇筑成型技术、构件养护技术,以及吊运、存储和运输技术等,代表构件有桁架钢筋预制板、梁柱构件、剪力墙板构件等。预应力混凝土预制构件生产技术还涵盖先张法和后张有粘结预制构件的生产技术,除了建筑工程中使用的预应力圆孔板、双T板、屋面梁、屋架、屋面板等,还包括市政和公路领域的预制桥梁构件等,重点研究预应力生产工艺和质量控制技术。

4.10.2技术指标

工厂化科学管理、自动化智能生产带来质量品质得到保证和提高;构件外观尺寸加工精度可达±2mm,混凝土强度标准差不大于4.0MPa,预留预埋尺寸精度可达±1mm,保护层厚度控制偏差±3mm,通过预应力和伸长值偏差控制保证预应力构件起拱满足设计要求并处于同一水平,构件承载力满足设计和规范要求。

预制构件的几何加工精度控制、混凝土强度控制、预埋件的精度、构件承载力性能、保护层厚度控制、预应力构件的预应力要求等尚应符合设计(包括标准图集)及有关标准的规定。

预制构件生产的效率指标、成本指标、能耗指标、环境指标和安全指标,应满足有关要求。

4.10.3适用范围

适用于建筑工程中各类钢筋混凝土和预应力混凝土预制构件。

4.10.4工程案例

北京万科金域缇香预制墙板和叠合板,(北京)中粮万科长阳半岛预制墙板、楼梯、叠合板和阳台板、沈阳惠生保障房预制墙板、叠合板和楼梯,国家体育场(鸟巢)看台板,国家网球中心预制挂板,深圳大运会体育中心体育场看台板,杭州奥体中心体育游泳馆预制外挂墙板和铺地板,济南万科金域国际预制外挂墙板板和叠合楼板,(长春)一汽技术中心停车楼预制墙板和双T板,武汉琴台文化艺术中心预制清水混凝土外挂墙板,河北怀来迦南葡萄酒厂预制彩色混凝土外挂墙板,某供电*生产基地厂房预制柱、屋面板和吊车梁,市政公路用预制T梁和厢梁、预制管片、预制管廊等。

5钢结构技术

5.1 高性能钢材应用技术

5.1.1技术内容

选用高强度钢材(屈服强度ReL≥390Mpa),可减少钢材用量及加工量,节约资源,降低成本。为了提高结构的抗震性,要求钢材具有高的塑性变形能力,选用低屈服点钢材(屈服强度ReL=100~225Mpa)。

国家标准《低合金高强度结构钢》GB/T1591中规定八个牌号,其中Q390、Q420、Q460、Q500、Q550、Q620、Q690属高强钢范围;《桥梁用结构钢》GB/T714有九个牌号,其中Q420q、Q460q、Q500q、Q550q、Q620q、Q690q属高强钢范围;《建筑结构用钢》GB/T19879有Q390GJ、Q420GJ、Q460GJ三个牌号属于高强钢范围;《耐候结构钢》GB/T4171,有Q415NH、Q460NH、Q500NH、Q550NH属于高强钢范围;《建筑用低屈服强度钢板》GB/T28905,有LY100、LY160、LY225属于低屈服强度钢范围。

5.1.2技术指标

钢厂供货品种及规格:轧制钢板的厚度为6~400mm,宽度为 1500~4800 mm,长度为6000~25000mm。有多种交货方式,包括:普通轧制态AR、控制轧制态CR、正火轧制态NR、控轧控冷态TMCP、正火态N、正火加回火态N+T、调质态QT等。

建筑结构用高强钢一般具有低碳、微合金、纯净化、细晶粒四个特点。使用高强度钢材时必须注意新钢种焊接性试验、焊接工艺评定、确定匹配的焊接材料和焊接工艺,编制焊接工艺规程。

建筑用低屈服强度钢中残余元素铜、铬、镍的含量应各不大于0.30%。成品钢板的化学成分允许偏差应符合GB/T222的规定。

5.1.3适用范围

高层建筑、大型公共建筑、大型桥梁等结构用钢,其它承受较大荷载的钢结构工程,以及屈曲约束支撑产品。

5.1.4 工程案例

国家体育场、国家游泳中心、昆明新机场、北京机场T3航站楼、深圳湾体育中心等大跨度钢结构工程;中央电视台新址、新保利大厦、广州新电视塔、法门寺合十舍利塔、深圳平安金融中心等超高层建筑工程;重庆朝天门大桥、港珠澳大桥等桥梁钢结构工程。

5.2 钢结构深化设计与物联网应用技术

5.2.1技术内容

钢结构深化设计是以设计院的施工图、计算书及其它相关资料为依据,依托专业深化设计软件平台,建立三维实体模型,计算节点坐标定位调整值,并生成结构安装布置图、零构件图、报表清单等的过程。钢结构深化设计与BIM结合,实现了模型信息化共享,由传统的“放样出图”延伸到施工全过程。物联网技术是通过射频识别(RFID)、红外感应器等信息传感设备,按约定的协议,将物品与互联网相连接,进行信息交换和通讯,以实现智能化识别、定位、追踪、监控和管理的一种网络技术。在钢结构施工过程中应用物联网技术,改善了施工数据的采集、传递、存储、分析、使用等各个环节,将人员、材料、机器、产品等与施工管理、决策建立更为密切的关系,并可进一步将信息与BIM模型进行关联,提高施工效率、产品质量和企业创新能力,提升产品制造和企业管理的信息化管理水平。主要包括以下内容:

(1)深化设计阶段,需建立统一的产品(零件、构件等)编码体系,规范图纸深度,保证产品信息的唯一性和可追溯性。深化设计阶段主要使用专业的深化设计软件,在建模时,对软件应用和模型数据有以下几点要求:

1)统一软件平台:同一工程的钢结构深化设计应采用统一的软件及版本号,设计过程中不得更改。同一工程宜在同一设计模型中完成,若模型过大需要进行模型分割,分割数量不宜过多。

2)人员协同管理:钢结构深化设计多人协同作业时,明确职责分工,注意避免模型碰撞冲突,并需设置好稳定的软件联机网络环境,保证每个深化人员的深化设计软件运行顺畅。

3)软件基础数据配置:软件应用前需配置好基础数据,如:设定软件自动保存时间;使用统一的软件系统字体;设定统一的系统符号文件;设定统一的报表、图纸模板等。

4)模型构件唯一性:钢结构深化设计模型,要求一个零构件号只能对应一种零构件,当零构件的尺寸、重量、材质、切割类型等发生变化时,需赋予零构件新的编号,以避免零构件的模型信息冲突报错。

5)零件的截面类型匹配:深化设计模型中每种截面的材料指定唯一的截面类型,保证材料在软件内名称的唯一性。

6)模型材质匹配:深化设计模型中每个零件都有对应的材质,根据相关国家钢材标准指定统一的材质命名规则,深化设计人员在建模过程中需保证使用的钢材牌号与国家标准中的钢材牌号相同。

(2)施工过程阶段,需建立统一的施工要素(人、机、料、法、环等)编码体系,规范作业过程,保证施工要素信息的唯一性和可追溯性。

(3)搭建必要的网络、硬件环境,实现数控设备的联网管理,对设备运转情况进行监控,提高设备管理的工作效率和质量。

(4)将物联网技术收集的信息与BIM模型进行关联,不同岗位的工程人员可以从BIM模型中获取、更新与本岗位相关的信息,既能指导实际工作,又能将相应工作的成果更新到BIM模型中,使工程人员对钢结构施工信息做出正确理解和高效共享。

(5)打造扎实、可靠、全面、可行的物联网协同管理软件平台,对施工数据的采集、传递、存储、分析、使用等环节进行规范化管理,进一步挖掘数据价值,服务企业运营。

5.2.2技术指标

(1)按照深化设计标准、要求等统一产品编码,采用专业软件开展深化设计工作。

(2)按照企业自身管理规章等要求统一施工要素编码。

(3)采用三维计算机辅助设计(CAD)、计算机辅助工艺规划(CAPP)、计算机辅助制造(CAM)、工艺路线仿真等工具和手段,提高数字化施工水平。

(4)充分利用工业以太网,建立企业资源计划管理系统(ERP)、制造执行系统(MES)、供应链管理系统(SCM)、客户管理系统(CRM)、仓储管理系统(WMS)等信息化管理系统或相应功能模块,进行产品全生命期管理。

(5)钢结构制造过程中可搭建自动化、柔性化、智能化的生产线,通过工业通信网络实现系统、设备、零部件以及人员之间的信息互联互通和有效集成。

(6)基于物联网技术的应用,进一步建立信息与BIM模型有效整合的施工管理模式和协同工作机制,明确施工阶段各参与方的协同工作流程和成果提交内容,明确人员职责,制定管理制度。

5.2.3适用范围

钢结构深化设计、钢结构工程制作、运输与安装。

5.2.4工程案例

苏州体育中心、武汉中心、重庆来福士、深圳汉京、北京中国尊大厦等。

5.3 钢结构智能测量技术

5.3.1技术内容

钢结构智能测量技术是指在钢结构施工的不同阶段,采用基于全站仪、电子水准仪、GPS全球定位系统、北斗卫星定位系统、三维激光扫描仪、数字摄影测量、物联网、无线数据传输、多源信息融合等多种智能测量技术,解决特大型、异形、大跨径和超高层等钢结构工程中传统测量方法难以解决的测量速度、精度、变形等技术难题,实现对钢结构安装精度、质量与安全、工程进度的有效控制。主要包括以下内容:

(1)高精度三维测量控制网布设技术

采用GPS空间定位技术或北斗空间定位技术,利用同时智能型全站仪(具有双轴自动补偿、伺服马达、自动目标识别(ATR)功能和机载多测回测角程序)和高精度电子水准仪以及条码因瓦水准尺,按照现行《工程测量规范》,建立多层级、高精度的三维测量控制网。

(2)钢结构地面拼装智能测量技术

使用智能型全站仪及配套测量设备,利用具有无线传输功能的自动测量系统,结合工业三坐标测量软件,实现空间复杂钢构件的实时、同步、快速地面拼装定位。

(3)钢结构精准空中智能化快速定位技术

采用带无线传输功能的自动测量机器人对空中钢结构安装进行实时跟踪定位,利用工业三坐标测量软件计算出相应控制点的空间坐标,并同对应的设计坐标相比较,及时纠偏、校正,实现钢结构快速精准安装。

(4)基于三维激光扫描的高精度钢结构质量检测及变形监测技术

采用三维激光扫描仪,获取安装后的钢结构空间点云,通过比较特征点、线、面的实测三维坐标与设计三维坐标的偏差值,从而实现钢结构安装质量的检测。该技术的优点是通过扫描数据点云可实现对构件的特征线、特征面进行分析比较,比传统检测技术更能全面反映构件的空间状态和拼装质量。

(5)基于数字近景摄影测量的高精度钢结构性能检测及变形监测技术

利用数字近景摄影测量技术对钢结构桥梁、大型钢结构进行精确测量,建立钢结构的真实三维模型,并同设计模型进行比较、验证,确保钢结构安装的空间位置准确。

(6)基于物联网和无线传输的变形监测技术。

通过基于智能全站仪的自动化监测系统及无线传输技术,融合现场钢结构拼装施工过程中不同部位的温度、湿度、应力应变、GPS数据等传感器信息,采用多源信息融合技术,及时汇总、分析、计算,全方位反映钢结构的施工状态和空间位置等信息,确保钢结构施工的精准性和安全性。

5.3.2技术指标

(1)高精度三维控制网技术指标

相邻点平面相对点位中误差不超过3mm,高程上相对高差中误差不超过2mm;单点平面点位中误差不超过5mm,高程中误差不超过2mm。

(2)钢结构拼装空间定位技术指标

拼装完成的单体构件即吊装单元,主控轴线长度偏差不超过3mm,各特征点监测值与设计值(X、Y、Z坐标值)偏差不超过10mm。具有球结点的钢构件,检测球心坐标值(X、Y、Z坐标值)偏差不超过3mm。构件就位后各端口坐标(X、Y、Z坐标值)偏差均不超过10mm,且接口(共面、共线)错台不超过2mm。

(3)钢结构变形监测技术指标

所测量的三维坐标(X、Y、Z坐标值)观测精度应达到允许变形值的1/20~1/10。

5.3.3适用范围

大型复杂或特殊复杂、超高层、大跨度等钢结构施工过程中的构件验收、施工测量及变形观测等。

5.3.4 工程案例

大型体育建筑:国家体育场(“鸟巢”)、国家体育馆、水立方等。

大型交通建筑:首都机场T3航站楼、天津西站、北京南站、港珠澳大桥等。

大型文化建筑:国家大剧院、上海世博会世博轴、北京凤凰国际中心等。

5.4 钢结构虚拟预拼装技术

5.4.1技术内容

(1)虚拟预拼装技术

采用三维设计软件,将钢结构分段构件控制点的实测三维坐标,在计算机中模拟拼装形成分段构件的轮廓模型,与深化设计的理论模型拟合比对,检查分析加工拼装精度,得到所需修改的调整信息。经过必要校正、修改与模拟拼装,直至满足精度要求。

(2)虚拟预拼装技术主要内容

1)根据设计图文资料和加工安装方案等技术文件,在构件分段与胎架设置等安装措施可保证自重受力变形不致影响安装精度的前提下,建立设计、制造、安装全部信息的拼装工艺三维几何模型,完全整合形成一致的输入文件,通过模型导出分段构件和相关零件的加工制作详图。

2)构件制作验收后,利用全站仪实测外轮廓控制点三维坐标。

①设置相对于坐标原点的全站仪测站点坐标,仪器自动转换和显示位置点(棱镜点)在坐标系中的坐标。

②设置仪器高和棱镜高,获得目标点的坐标值。

③设置已知点的方向角,照准棱镜测量,记录确认坐标数据。

3)计算机模拟拼装,形成实体构件的轮廓模型。

①将全站仪与计算机连接,导出测得的控制点坐标数据,导入到EXCEL表格,换成(x,y,z)格式。收集构件的各控制点三维坐标数据、整理汇总。

②选择复制全部数据,输入三维图形软件。以整体模型为基准,根据分段构件的特点,建立各自的坐标系,绘出分段构件的实测三维模型。

③根据制作安装工艺图的需要,模拟设置胎架及其标高和各控制点坐标。

④将分段构件的自身坐标转换为总体坐标后,模拟吊上胎架定位,检测各控制点的坐标值。

4)将理论模型导入三维图形软件,合理地插入实测整体预拼装坐标系。

5)采用拟合方法,将构件实测模拟拼装模型与拼装工艺图的理论模型比对,得到分段构件和端口的加工误差以及构件间的连接误差。

6)统计分析相关数据记录,对于不符规范允许公差和现场安装精度的分段构件或零件,修改校正后重新测量、拼装、比对,直至符合精度要求。

(3)虚拟预拼装的实体测量技术

1)无法一次性完成所有控制点测量时,可根据需要,设置多次转换测站点。转换测站点应保证所有测站点坐标在同一坐标系内。

2)现场测量地面难以保证绝对水平,每次转换测站点后,仪器高度可能会不一致,故设置仪器高度时应以周边某固定点高程作为参照。

3)同一构件上的控制点坐标值的测量应保证在同一人同一时段完成,保证测量准确和精度。

4)所有控制点均取构件外轮廓控制点,如遇到端部有坡口的构件,控制点取坡口的下端,且测量时用的反光片中心位置应对准构件控制点。

5.4.2技术指标

预拼装模拟模型与理论模型比对取得的几何误差应满足《钢结构工程施工规范》GB50755和《钢结构工程施工质量验收规范》GB50205以及实际工程使用的特别需求。

无特别需求情况下,结构构件预拼装主要允许偏差:

预拼装单元总长           ±5.0mm

各楼层柱距                ±4.0mm

相邻楼层梁与梁之间距离    ±3.0mm

拱度(设计要求起拱)    ±l/5000

各层间框架两对角线之差     H/2000,且不应大于5.0mm

任意两对角线之差         ∑H/2000,且不应大于8.0mm

接口错边                 2.0mm

节点处杆件轴线错位         4.0mm

5.4.3适用范围

各类建筑钢结构工程,特别适用于大型钢结构工程及复杂钢结构工程的预拼装验收。

5.4.4工程案例

天津宝龙国际中心、天津宝龙城市广场、深圳平安金融中心、北京中国尊大厦等。

5.5 钢结构高效焊接技术

5.5.1技术内容

当前钢结构制作安装施工中能有效提高焊接效率的技术有:(1)焊接机器人技术;(2)双(多)丝埋弧焊技术;(3)免清根焊接技术;(4)免开坡口熔透焊技术;(5)窄间隙焊接技术。

焊接机器人技术克服手工焊接受劳动强度、焊接速度等因素的制约,可结合双(多)丝、免清根、免开坡口等技术,实现大电流、高速、低热输入的连续焊接,大幅提高焊接效率;双(多)丝埋弧焊技术熔敷量大,热输入小,速度快,焊接效率及质量提升明显;免清根焊接技术通过采用陶瓷衬垫和优化坡口形式(如U型坡口),省略掉碳弧气刨工序,缩短焊接时长,减少焊缝熔敷量,同时可避免渗碳对板材力学性能的影响;免开坡口熔透焊技术采用单丝可实现t≤12mm板厚熔透焊接,采用双(多)丝可实现t≤20mm板厚熔透焊接,免除坡口加工工序;窄间隙焊接技术剖口窄小,焊丝熔敷填充量小,相比常规坡口角度焊缝可减少1/2~2/3的焊丝熔敷量,焊接效率提高明显,焊材成本降低明显,效率提高和能源节省的效益明显。

5.5.2技术指标

焊接工艺参数须按《钢结构焊接规范》GB50661要求,满足焊接工艺评定试验要求;承载静荷载结构焊缝和需疲劳验算结构的焊缝,须按《钢结构焊接规范》GB50661分别进行焊缝外观质量检验和内部质量无损检测;焊缝超声波检测等级不低于B级,母材厚度超过100mm应进行双面双侧检验。

5.5.3适用范围

所有钢结构工厂制作、现场安装的焊接。

5.5.4 工程案例

国家体育中心、深圳平安金融中心、天津高银117大厦、天津周大福、南京金鹰商业广场等。

5.6 钢结构滑移、顶(提)升施工技术

5.6.1技术内容

滑移施工技术是在建筑物的一侧搭设一条施工平台,在建筑物两边或跨中铺设滑道,所有构件都在施工平台上组装,分条组装后用牵引设备向前牵引滑移(可用分条滑移或整体累积滑移)。结构整体安装完毕并滑移到位后,拆除滑道实现就位。滑移可分为结构直接滑移、结构和胎架一起滑移、胎架滑移等多种方式。牵引系统有卷扬机牵引、液压千斤顶牵引与顶推系统等。结构滑移设计时要对滑移工况进行受力性能验算,保证结构的杆件内力与变形符合规范和设计要求。

整体顶(提)升施工技术是一项成熟的钢结构与大型设备安装技术,它集机械、液压、计算机控制、传感器监测等技术于一体,解决了传统吊装工艺和大型起重机械在起重高度、起重重量、结构面积、作业场地等方面无法克服的难题。顶(提)升方案的确定,必须同时考虑承载结构(永久的或临时的)和被顶(提)升钢结构或设备本身的强度、刚度和稳定性。要进行施工状态下结构整体受力性能验算,并计算各顶(提)点的作用力,配备顶升或提升千斤顶。对于施工支架或下部结构及地基基础应验算承载能力与整体稳定性,保证在最不利工况下足够的安全性。施工时各作用点的不同步值应通过计算合理选取。

顶(提)升方式选择的原则,一是力求降低承载结构的高度,保证其稳定性,二是确保被顶(提)升钢结构或设备在顶(提)升中的稳定性和就位安全性。确定顶(提)升点的数量与位置的基本原则是:首先保证被顶(提)升钢结构或设备在顶(提)升过程中的稳定性;在确保安全和质量的前提下,尽量减少顶(提)升点数量;顶(提)升设备本身承载能力符合设计要求。顶(提)升设备选择的原则是:能满足顶(提)升中的受力要求,结构紧凑、坚固耐用、维修方便、满足功能需要(如行程、顶(提)升速度、安全保护等)。

5.6.2技术指标

滑移牵引力计算,当钢与钢面滑动摩擦时,摩擦系数取0.12~0.15;当滚动摩擦时,滚动轴处摩擦系数取0.1;当不锈钢与四氟聚乙烯板之间的滑靴摩擦时,摩擦系数取0.08。

整体顶(提)升方案要作施工状态下结构整体受力性能验算,依据计算所得各顶(提)点的作用力配备千斤顶;提升用钢绞线安全系数:上拔式提升时,应大于3.5;爬升式提升时,应大于5.5。正式提升前的试提升需悬停静置12小时以上并测量结构变形情况;相邻两提升点位移高差不超过2cm。

5.6.3适用范围

滑移施工技术适用于大跨度网架结构、平面立体桁架(包括曲面桁架)及平面形式为矩形的钢结构屋盖的安装施工、特殊地理位置的钢结构桥梁。特别是由于现场条件的限制,吊车无法直接安装的结构。

整体顶(提)升施工技术适用于体育场馆、剧院、飞机库、钢连桥(廊)等具有地面拼装条件,又有较好的周边支承条件的大跨度屋盖钢结构;电视塔、超高层钢桅杆、天线、电站锅炉等超高构件;大型龙门起重机主梁、锅炉等大型设备等。

5.6.4 工程案例

昆明新机场航站楼,武汉火车站中央站房,北京华能大厦,天津嘉里中心酒店,哈尔滨万达茂滑雪乐园,成都双流国际机场T2航站楼。

鄂尔多斯东胜体育中心(2608t),海航美兰机场2号机库(2000t),西飞公司369号厂房(1967t),武汉国际博览中心洲际酒店(1500t),上海金虹桥国际中心(1700t),**会展中心(1250t),河南建设大厦(1440t),天津和平中心桅杆。

5.7钢结构防腐防火技术

5.7.1技术内容

(1)防腐涂料涂装

在涂装前,必须对钢构件表面进行除锈。除锈方法应符合设计要求或根据所用涂层类型的需要确定,并达到设计规定的除锈等级。常用的除锈方法有喷射除锈、抛射除锈、手工和动力工具除锈等。涂料的配置应按涂料使用说明书的规定执行,当天使用的涂料应当天配置,不得随意添加稀释剂。涂装施工可采用刷涂、滚涂、空气喷涂和高压无气喷涂等方法。宜在温度、湿度合适的封闭环境下,根据被涂物体的大小、涂料品种及设计要求,选择合适的涂装方法。构件在工厂加工涂装完毕,现场安装后,针对节点区域及损伤区域需进行二次涂装。

近年来,水性无机富锌漆凭借优良的防腐性能,外加耐光耐热好、使用寿命长等特点,常用于对环境和条件要求苛刻的钢结构领域。

(2)防火涂料涂装

防火涂料分为薄涂型和厚涂型两种,薄涂型防火涂料通过遇火灾后涂料受热材料膨胀延缓钢材升温,厚涂型防火涂料通过防火材料吸热延缓钢材升温,根据工程情况选取使用。

薄涂型防火涂料的底涂层(或主涂层)宜采用重力式喷枪喷涂,其压力约为0.4MPa。*部修补和小面积施工,可用手工涂抹。面涂层装饰涂料可刷涂、喷涂或滚涂。双组分装薄涂型涂料,现场应按说明书规定调配;单组分薄涂型涂料应充分搅拌。喷涂后,不应发生流淌和下坠。

厚涂型防火涂料宜采用压送式喷涂机喷涂,空气压力为0.4~0.6MPa,喷枪口直径宜为6~10mm。配料时应严格按配合比加料和稀释剂,并使稠度适宜,当班使用的涂料应当班配制。厚涂型防火涂料施工时应分遍喷涂,每遍喷涂厚度宜为5~10mm,必须在前一遍基本干燥或固化后,再喷涂下一遍,涂层保护方式、喷涂遍数与涂层厚度应根据施工方案确定。操作者应用测厚仪随时检测涂层厚度,80%及以上面积的涂层总厚度应符合有关耐火极限的设计要求,且最薄处厚度不应低于设计要求的85%。

钢结构防火涂层不应有误涂、漏涂,涂层应闭合,无脱层、空鼓、明显凹陷、粉化松散和浮浆等外观缺陷,乳突已剔出;保护裸露钢结构及露天钢结构的防火涂层的外观应平整,颜色装饰应符合设计要求。

5.7.2技术指标

(1)防腐涂料涂装技术指标

防腐涂料中环境污染物的含量应符合《民用建筑工程室内环境污染控制规范》(GB50325的规定和要求。涂装之前钢材表面除锈等级应符合设计要求,设计无要求时应符合《涂覆涂料前钢材表面处理 表面清洁度的目视评定 第1部分:未涂覆过的钢材表面和全面清除原有涂层后的钢材表面的锈蚀等级和处理等级》(GB/T8923.1)的规定评定等级。涂装施工环境的温度、湿度、基材温度要求,应根据产品使用说明确定,无明确要求的,宜按照环境温度5~38℃,空气湿度小于85%,基材表面温度高于露点3℃以上的要求控制,雨、雪、雾、大风等恶劣天气严禁户外涂装。涂装遍数、涂层厚度应符合设计要求,当设计对涂层厚度无要求时,涂层干漆膜总厚度:室外应为150μm,室内应为125μm,允许偏差为-25μm。每遍涂层干膜厚度的允许偏差为-5μm。

当钢结构处在有腐蚀介质或露天环境且设计有要求时,应进行涂层附着力测试,可按照现行国家标准《漆膜附着力测定法》(GB1720)或《色漆和清漆漆膜的划格试验》(GB/T9286)执行。在检测范围内,涂层完整程度达到70%以上即为合格。

(2)防火涂料涂装技术指标

钢结构防火材料的性能、涂层厚度及质量要求应符合《钢结构防火涂料通用技术条件》(GBl4907)和《钢结构防火涂料应用技术规程》(CECS24)的规定和设计要求,防火材料中环境污染物的含量应符合《民用建筑工程室内环境污染控制规范》(GB50325)的规定和要求。

钢结构防火涂料生产厂家必须有防火监督部门核发的生产许可证。防火涂料应通过国家检测机构检测合格。产品必须具有国家检测机构的耐火极限检测报告和理化性能检测报告,并应附有涂料品种、名称、技术性能、制造批量、贮存期限和使用说明书。在施工前应复验防火涂料的黏结强度和抗压强度。防火涂料施工过程中和涂层干燥固化前,环境温度宜保持在5~38℃,相对湿度不宜大于90%,空气应流通。当风速大于5m/s,或雨天和构件表面有结露时,不宜作业。

5.7.3适用范围

钢结构防腐涂装技术适用于各类建筑钢结构。

薄涂型防火涂料涂装技术适用于工业、民用建筑楼盖与屋盖钢结构;厚涂型防火涂料涂装技术适用于有装饰面层的民用建筑钢结构柱、梁。

5.7.4 工程案例

广州东塔、无锡国金、武汉中心、武汉机场T3航站楼、深圳平安金融中心、武汉国际博览中心等。

5.8 钢与混凝土组合结构应用技术

5.8.1技术内容

型钢与混凝土组合结构主要包括钢管混凝土柱,十字型、H型、箱型、组合型钢混凝土柱,钢管混凝土叠合柱,小管径薄壁(5.8.2技术指标

钢管混凝土构件的径厚比D/t宜为20~135、套箍系数θ宜为0.5~2.0、长径比不宜大于20;矩形钢管混凝土受压构件的混凝土工作承担系数αc应控制在0.1~0.7;型钢混凝土框架柱的受力型钢的含钢率宜为4%~10%。

组合结构执行《型钢混凝土组合结构技术规程》JGJ138、《钢管混凝土结构技术规范》GB50936、 《钢-混凝土组合结构施工规范》GB50901、《钢管混凝土工程施工质量验收规范》GB50628。

5.8.3适用范围

钢管混凝土特别适用于高层、超高层建筑的柱及其它有重载承载力设计要求的柱;型钢混凝土适合于高层建筑外框柱及公共建筑的大柱网框架与大跨度梁设计;钢混组合梁适用于结构跨度较大而高跨比又有较高要求的楼盖结构;钢管混凝土叠合柱主要适用于高层、超高层建筑的柱及其它有承载力要求较高的柱;小管径薄壁钢管混凝土柱适用于多高层住宅。

5.8.4 工程案例

北京中国尊大厦、天津高银117大厦、深圳平安金融中心、福建省厦门国际中心、重庆嘉陵帆影、郑州绿地中央广场、福州市东部新城商务办公中心区、杭州钱江世纪城人才专项用房。

5.9 索结构应用技术

5.9.1技术内容

(1)索结构的设计

进行索结构设计时,需要首先确定索结构体系,包括结构的形状、布索方式、传力路径和支承位置等;其次采用非线性分析法进行找形分析,确定设计初始态,并通过施加预应力建立结构的强度与刚度,进行索结构在各种荷载工况下的极限承载能力设计与变形验算;;然后进行索具节点、锚固节点设计;最后对支承位置及下部结构设计。

(2)索结构的施工和防护

索结构的预应力施工技术可分为分批张拉法和分级张拉法。分批张拉法是指:将不同的拉索进行分批,执行合适的分批张拉顺序,以有效的改善张拉施工过程中结构中的索力分布,保证张拉过程的安全性和经济性。分级张拉法是指:对于索力较大的结构,分多次张拉将拉索中的预应力施加到位,可以有效的调节张拉过程中结构内力的峰值。实际工程中通常将这两种张拉技术结合使用。

目前索结构多采用定尺定长的制作工艺,一方面要求拉索具有较高的制作精度,另一方面对拉索施工过程中的夹持和锚固也提出了较高的要求。索结构的夹持构件和索头节点应具有高强度/抗变形的材料属性,并在安装过程中具有抗滑移和精确定位的能力。

索结构还需要采取可靠的防水、防腐蚀和防老化措施,同时钢索上应涂敷防火涂料以满足防火要求,应定期检查拉索在使用过程中是否松弛,并采用恰当的措施予以张紧。

5.9.2技术指标

(1)拉索的技术指标

拉索采用高强度材料制作,作为主要受力构件,其索体的静载破断荷载一般不小于索体标准破断荷载的95%,破断延伸率不小于2%,拉索的的设计强度一般为0.4~0.5倍标准强度。当有疲劳要求时,拉索应按规定进行疲劳试验。此外不同用途的拉索还应分别满足《建筑工程用索》和《桥梁缆索用热镀锌钢丝》GB/T17101、《预应力混凝土用钢绞线》GB/T5224、《重要用途钢丝绳》GB8918等相关标准。拉索采用的锚固装置应满足《预应力筋用锚具、夹具和连接器》GB/T14370及相关钢材料标准。

(2)设计技术指标

索结构的选型应根据使用要求和预应力分布特点,采用找形方法确定。不同的索结构具有不同的造型设计技术指标。一般情况下柔性索网结构的拉索垂度和跨度比值为1/10~1/20,受拉内环和受压外环的直径比值约为1/5~1/20,杂交索系结构的矢高和跨度比值约为1/8~1/12。

(3)施工技术指标

索结构的张拉过程应满足《索结构技术规程》JGJ257要求。拉索的锚固端允许偏差为锚固长度的1/3000和20mm的较小值。张拉过程应通过有限元法进行施工过程全过程模拟,并根据模拟结果确定拉索的预应力损失量。各阶段张拉时应检查索力与结构的变形值。

5.9.3适用范围

可用于大跨度建筑工程的屋面结构、楼面结构等,可以单独用索形成结构,也可以与网架结构、桁架结构、钢结构或混凝土结构组合形成杂交结构,以实现大跨度,并提高结构、构件的性能,降低造价。该技术还可广泛用于各类大跨度桥梁结构和特种工程结构。

5.9.4 工程案例

宝安体育场、苏州体育中心体育馆和游泳馆(在建)、青岛北客站、济南奥体中心体育馆、常州体育中心、北京工业大学羽毛球馆等。

5.10 钢结构住宅应用技术

5.10.1技术内容

钢结构住宅建筑设计应以集成化住宅建筑为目标,应按模数协调的原则实现构配件标准化、设备产品定型化。采用钢结构作为住宅的主要承重结构体系,对于低密度住宅宜采用冷弯薄壁型钢结构体系为主,墙体为墙柱加石膏板,楼盖为C型格栅加轻板;对于多、高层住宅结构体系可选用钢框架、框架支撑(墙板)、筒体结构、钢框架—钢混组合等体系,楼盖结构宜采用钢筋桁架楼承楼板、现浇钢筋混凝土结构以及装配整体式楼板,墙体为预制轻质板或轻质砌块。目前钢结构住宅的主要发展方向有可适用于多层的采用带钢板剪力墙或与普钢混合的轻钢结构;可适用于低、多层的基于方钢管混凝土组合异形柱和外肋环板节点为主的钢框架体系;可适用于高层以钢框架与混凝土筒体组合构成的混合结构或以带钢支撑的框架结构;以及适用于高层的基于方钢管混凝土组合异形柱和外肋环板节点为主的框架-支撑和框架-核心筒体系以及钢管束组合剪力墙结构体系。

轻型钢结构住宅的钢构件宜选用热轧H型钢、高频焊接或普通焊接的H型钢、冷轧或热轧成型的钢管、钢异形柱等;多高层钢结构住宅结构柱材料可采用纯钢柱或钢管混凝土柱等,柱截面形状可采用矩形、圆形、L形等;外墙体可为砂加气板、灌浆料墙板或蒸压加气混凝土砌块,内墙体可选用轻钢龙骨石膏板等板材,楼板可为钢筋桁架楼承板、叠合板或现浇板。

除常见的装配化钢结构住宅结构体系之外,模块钢结构建筑开始发展。模块建筑是将传统房屋以单个房间或一定的三维建筑空间进行模块单元划分,每个单元都在工厂预制且精装修,单元运输到工地整体连接而成的一种新型建筑形式。根据结构形式的不同可分为:全模块建筑结构体系以及复合模块建筑结构体系,复合模块建筑结构体系又可分为:模块单元与传统框架结构复合体系、模块单元与板体结构复合体系、外骨架(巨型框架)模块建筑结构体系、模块单元与剪力墙或核心筒复合结构体系;模块外围护墙板可选用加气混凝土板、薄板钢骨复合轻质外墙、轻集料混凝土与岩棉板复合墙板;模块底板可采用钢筋混凝土结构底板、轻型结构底板;顶板可为双面钢板夹芯板。

钢结构住宅建设要以产业化为目标做好墙板的配套工作,以试点工程为基础做好钢结构住宅的推广工作。

5.10.2技术指标

钢结构住宅结构设计应符合工厂生产、现场装配的工业化生产要求,构件及节点设计宜标准化、通用化、系列化,在结构设计中应合理确定建筑结构体的装配率。

钢材性能应符合现行国家标准《钢结构设计规范》GB50017和《建筑抗震设计规范》GB50009的规定,可优先选用高性能钢材。

钢结构住宅应遵循现行国家标准《装配式钢结构建筑技术标准》GB/T51232进行设计,按现行国家标准《建筑工程抗震设防分类标准》GB50223的规定确定其抗震设防类别,并应按现行国家标准《建筑抗震设计规范》GB50011进行抗震设计。结构高度大于80m的建筑宜验算风荷载的舒适性。

钢结构住宅的防火等级应按现行国家标准《建筑设计防火规范》GB50016确定,防火材料宜优先选用防火板,板厚应根据耐火时限和防火板产品标准确定,承重的钢构件耐火时限应满足相关要求。

5.10.3适用范围

冷弯薄壁型钢以及轻型钢框架为结构的轻型钢结构可适用于低、多层(6层,24m以下)住宅的建设。多高层装配式钢结构住宅体系最大适用高度应符合《装配式钢结构建筑技术标准》GB/T51232的规定,主要参照值如下:

表5.1 多高层装配式钢结构适用的最大高度(m)

结构体系

6度

7度

8度

9度

(0.05g)

(0.10g)

(0.15g)

(0.20g)

(0.30g)

(0.40g)

钢框架结构

110

110

90

90

70

50

钢框架-偏心支撑结构

220

220

200

180

150

120

钢框架-偏心支撑结构

钢框架-屈曲约束支撑结构

钢框架-延性墙板结构

240

240

220

200

180

160

筒体(框筒、筒中筒、桁架筒、束筒)结构

巨型结构

300

300

280

260

240

180

交错桁架结构

90

60

60

40

40

-

对于钢结构模块建筑,1~3层模块建筑宜采用全模块结构体系,模块单元可采用集装箱模块,连接节点可选用集装箱角件连接;3~6层可采用全模块结构体系,单元连接可采用梁梁连接技术;6~9层的模块建筑单元间可采用预应力模块连接技术,9层以上需要采用模块单元与剪力墙或核心筒相结合的结构体系。

钢结构住宅建设要以产业化为目标做好墙板的配套工作,以试点工程为基础做好钢结构住宅的推广工作。

5.10.4 工程案例

包头万郡-大都城住宅小区、汶川县映秀镇渔子溪村重建工程、沧州福康家园公共租赁住房住宅项目、镇江港南路公租房项目、天津静海子牙白领公寓项目等。

6 机电安装工程技术

6.1 基于BIM的管线综合技术

6.1.1技术内容

(1)技术特点

随着BIM技术的普及,其在机电管线综合技术应用方面的优势比较突出。丰富的模型信息库、与多种软件方便的数据交换接口,成熟、便捷的的可视化应用软件等,比传统的管线综合技术有了较大的提升。

(2)深化设计及设计优化

机电工程施工中,许多工程的设计图纸由于诸多原因,设计深度往往满足不了施工的需要,施工前尚需进行深化设计。机电系统各种管线错综复杂,管路走向密集交错,若在施工中发生碰撞情况,则会出现拆除返工现象,甚至会导致设计方案的重新修改,不仅浪费材料、延误工期,还会增加项目成本。基于BIM技术的管线综合技术可将建筑、结构、机电等专业模型整合,可很方便的进行深化设计,再根据建筑专业要求及净高要求将综合模型导入相关软件进行机电专业和建筑、结构专业的碰撞检查,根据碰撞报告结果对管线进行调整、避