主页 > 型号大全 > 正文

电感型号大全(电感型号大全图片大全)

2024-04-13 16:15:20 来源:阿帮个性网 点击:
文章目录导航:
  1. 0201电感
  2. 电感型号对照表
  3. 电感型号大全图片大全
  4. 电感型号大全表
  5. 电感规格
  6. 电感规格参数详解
  7. 电感型号大全图解
  8. 电感型号参数大全

0201电感

贴片电感的型号不知道,其特点是体积小和独石电容一样,电感量也小0.01uH--1mH各种规格,同时由于使用闭合磁路的磁芯,磁泄漏小,安插在线路板上对其他元件干扰很小。

电感型号对照表

新能源储能功率电感常用的型号有很多种,以下我列举一些常见的型号:

1.NP系列电感:NP系列电感是一种高性能电感,主要用于电力电子、电信及计算机设备中。由于其高质量的铁芯材料,它能够承受高达300°C的温度。

2.PQ系列电感:PQ系列电感也是一种高性能电感,一般用于直流-直流转换器和升压/降压转换器。它们的优点是易于集成和安装。

3.RM系列电感:RM系列电感是一种低线性磁阻电感,具有优异的高频特性和低转换损耗。常用于功率转换器和电源应用中。

4.E系列电感:E系列电感是一种高质量的漏磁电感。它们广泛应用于低功耗应用,例如卡车、卡车挂车和轻型汽车。

5.ET系列电感:ET系列电感也是一种高质量的漏磁电感。它们适用于DC/DC变换器、数据库和一些计算机等高效能的电子海岸。

以上是几种较为常见的新能源储能功率电感型号,当然还有其他型号,您可以根据实际情况选择安装使用。

电感型号大全图片大全

薄膜集成电路是将整个电路的晶体管、二极管、电阻、电容和电感等元件以及它们之间的互连引线,全部用厚度在1微米以下的金属、半导体、金属氧化物、多种金属混合相、合金或绝缘介质薄膜,并通过真空蒸发、溅射和电镀等工艺制成的集成电路。薄膜集成电路中的有源器件,即晶体管,有两种材料结构形式:一种是薄膜场效应硫化镉或硒化镉晶体管,另一种是薄膜热电子放大器。更多的实用化的薄膜集成电路采用混合工艺,即用薄膜技术在玻璃、微晶玻璃、镀釉和抛光氧化铝陶瓷基片上制备无源元件和电路元件间的连线,再将集成电路、晶体管、二极管等有源器件的芯片和不使用薄膜工艺制作的功率电阻、大容量的电容器、电感等元件用热压焊接、超声焊接、梁式引线或凸点倒装焊接等方式,就可以组装成一块完整的集成电路厚膜集成电路是在陶瓷片或玻璃等绝缘物体上,外加晶体二极管、晶体管、电阻器或半导体集成电路等元器件构成的集成电路,一般用在电视机的开关电源电路中或音响系统的功率放大电路中。部分彩色电视机的伴音电路和末级视放电路也使用厚膜集成电路。1.电源厚膜集成电路开关电源电路使用的厚膜集成电路主要用于脉冲宽度控制、稳压控制及开关振荡等。自激式开关电源电路常用的厚膜集成电路有STR-S6308、STR-S6309、STR-S5941、STR59041等型号。它激式开关电源电路中常用的厚膜集成电路有STR-S6708、STR-S6709等型号。图9-2是STR-S6309和STR-S6709的内电路框图。2.音频功放厚膜集成电路音频功放集成电路的主要作用是对输入的音频信号进行功率放大,推动扬声器发声。常用的音频功放厚膜集成电路有STK4803、STK4042、STK4171、STK4191、STK4152、STK4843、STK3048A、STK6153等型号。图9-3是STK4191的内电路框图。市场上流行的“傻瓜”型厚膜集成电路也称功率模块,是将半导体功放集成电路及其外外围的电阻器、电容器、电感器等元器件封装在一起构成的,常用的有皇后AMP1200、傻瓜175及超级傻瓜D-100、D-150、D-200等型号。这种厚膜集成电路只要接通音源、电源和扬声器即可工作,不用外加其它元器件。参考资料:http://www.6ic.net/arts.asp?id=3234

电感型号大全表

1.电源厚膜集成电路开关电源电路使用的厚膜集成电路主要用于脉冲宽度控制、稳压控制及开关振荡等。自激式开关电源电路常用的厚膜集成电路有STR-S6308、STR-S6309、STR-S5941、STR59041等型号。它激式开关电源电路中常用的厚膜集成电路有STR-S6708、STR-S6709等型号。图9-2是STR-S6309和STR-S6709的内电路框图。2.音频功放厚膜集成电路音频功放集成电路的主要作用是对输入的音频信号进行功率放大,推动扬声器发声。常用的音频功放厚膜集成电路有STK4803、STK4042、STK4171、STK4191、STK4152、STK4843、STK3048A、STK6153等型号。图9-3是STK4191的内电路框图。市场上流行的“傻瓜”型厚膜集成电路也称功率模块,是将半导体功放集成电路及其外外围的电阻器、电容器、电感器等元器件封装在一起构成的,常用的有皇后AMP1200、傻瓜175及超级傻瓜D-100、D-150、D-200等型号。这种厚膜集成电路只要接通音源、电源和扬声器即可工作,不用外加其它元器件。

电感规格

器件选型是硬件工程师的基本工作,本文主要从电感的工艺和应用出发,介绍电感如何选型。

一、电感的基本原理

电感,和电容、电阻一起,是电子学三大基本无源器件;电感的功能就是以磁场能的形式储存电能量。

以圆柱型线圈为例,简单介绍下电感的基本原理

如上图所示,当恒定电流流过线圈时,根据右手螺旋定则,会形成一个图示方向的静磁场。而电感中流过交变电流,产生的磁场就是交变磁场,变化的磁场产生电场,线圈上就有感应电动势,产生感应电流:

电流变大时,磁场变强,磁场变化的方向与原磁场方向相同,根据左手螺旋定则,产生的感应电流与原电流方向相反,电感电流减小;

电流变小时,磁场变弱,磁场变化的方向与原磁场方向相反,根据左手螺旋定则,产生的感应电流与原电流方向相同,电感电流变大。

以上就是楞次定律,最终效果就是电感会阻碍流过的电流产生变化,就是电感对交变电流呈高阻抗。同样的电感,电流变化率越高,产生的感应电流越大,那么电感呈现的阻抗就越高;如果同样的电流变化率,不同的电感,如果产生的感应电流越大,那么电感呈现的阻抗就越高。

所以,电感的阻抗于两个因素有关:一是频率;二是电感的固有属性,也就电感的值,也称为电感。根据理论推导,圆柱形线圈的电感公式如下:

可以看出电感的大小与线圈的大小及内芯的材料有关。

实际电感的特性不仅仅有电感的作用,还有其他因素,如:

绕制线圈的导线不是理想导体,存在一定的电阻;

电感的磁芯存在一定的热损耗;

电感内部的导体之间存在着分布电容。

因此,需要用一个较为复杂的模型来表示实际电感,常用的等效模型如下:

等效模型形式可能不同,但要能体现损耗和分布电容。根据等效模型,可以定义实际电感的两个重要参数。

自谐振频率(Self-ResonanceFrequency)

由于Cp的存在,与L一起构成了一个谐振电路,其谐振频率便是电感的自谐振频率。在自谐振频率前,电感的阻抗随着频率增加而变大;在自谐振频率后,电感的阻抗随着频率增加而变小,就呈现容性。

品质因素(QualityFactor)

也就是电感的Q值,电感储存功率与损耗功率的比,Q值越高,电感的损耗越低,和电感的直流阻抗直接相关的参数。自谐振频率和Q值是高频电感的关键参数

二、电感的工艺结构

电感的工艺大致可以分为3种:

顾名思义就是把铜线绕在一个磁芯上形成一个线圈,绕线的方式有两种:

圆柱形绕法(RoundWound)

圆柱形绕法很常见,应用也很广,例如:

图片来自Bing,彩虹圈,应该是出彩中国人

平面形绕法(FlatWound)

平面形绕法也很常见,大家一定见过一掰就断的蚊香

图片来自Bing,蚊香

平面形绕法优点很明显,就是减小了器件的高度。

由前文的公式可知,磁芯的磁导率越大,电感值越大,磁芯可以是

非磁性材料:例如空气芯、陶瓷芯,貌似就不能叫磁芯了;这样电感值较小,但是基本不存在饱和电流

铁磁性材料:例如铁氧体、波莫合金等等;合金磁导率比铁氧体大;铁磁性材料存在磁饱和现象,有饱和电流。

绕线电感可提供大电流、高感值;磁芯磁导率越大,同样的感值,绕线就少,绕线少就能降低直流电阻;同样的尺寸,绕线少可以绕粗,提高电流。

另外,电源设计中,经常遇到电感啸叫的问题,本质就是磁场的变化引起了导体,也就是线圈的振动,振动的频率刚好在音频范围内,人耳就可以听见,合金一体成型电感,比较牢固,可以减少振动。

多层片状电感的制作工艺:将铁氧体或陶瓷浆料干燥成型,交替印刷导电浆料,最后叠层、烧结成一体化结构(Monolithic)。

引自TheWondersofElectromagnetism

多层片状电感的比绕线电感尺寸小,标准化封装,适合自动化高密度贴装;一体化结构,可靠性高,耐热性好。

薄膜电感采用的是类似于IC制作的工艺,在基底上镀一层导体膜,然后采用光刻工艺形成线圈,最后增加介质层、绝缘层、电极层,封装成型。

薄膜器件的制作工艺,如下图所示

光刻工艺的精度很高,制作出来的线条更窄、边缘更清晰。因此,薄膜电感具有

更小的尺寸,008004封装

更小的ValueStep,0.1nH

更小的容差,0.05nH

更好的频率稳定性

三、电感的应用及选型

电感,从工艺技术上,领先的基本上是三大日系厂商:TDK、Murata、TaiyoYuden。这三家的产品线完整,基本上可以满足大多数需求。

三家都有相应的选型软件,有电感、电容等所有系列的产品及相关参数曲线。

SEAT2013-TDK

Simsurfing-Murata

TaiyoYudenComponentsSelectionGuide&DataLibrary

个人感觉TDK和Murata更领先一点,从官网的质量看出来的,像Coilcraft的官网就low一点,毕竟网站也是需要投资的。

在电路设计中,电感主要有三大类应用:

功率电感:主要用于电压转换,常用的DCDC电路都要使用功率电感;

去耦电感:主要用于滤除电源线或信号线上的噪声,EMC工程师应该熟悉;

高频电感:主要用于射频电路,实现偏置、匹配、滤波等电路。

功率电感通常用于DCDC电路中,通过积累并释放能量来保持连续的电流。

功率电感大都是绕线电感,可以提高大电流、高电感;

图出自MurataChipInductorCatalog

图出自MurataChipInductorCatalog

功率电感需要根据所选的DCDC芯片来选型。通常,DCDC芯片的规格书上都有推荐的电感值,以及相关参数的计算,这里不再赘述。从电感本身的角度来说明如何选型。

上图截图至TY-COMPAS

电感值

通常应使用DCDC芯片规格书推荐的电感值;电感值越大,纹波越小,但尺寸会变大;通常提高开关频率,可以使用小电感,但开关频率提高会增加系统损耗,降低效率;

额定电流

功率电感一般有两个额定电流,即温升电流和饱和电流;

当电感有电流通过的时候,由于损耗的存在,电感发热而产生温升,电流越大,温升越大;在额定的温度范围内,允许的最大电流即为温升电流。

增加磁芯的磁导率,可以提高电感值,通常使用铁磁性材料做磁芯。铁磁性材料存在磁饱和现象,即当磁场强度超过一定值时,磁感应强度不在增加,即磁导率下降了,也就是电感下降了。在额定电感值范围内,允许的最大电流即为饱和电流。

磁滞回线:磁性材料-------铁氧磁体,比重计,多孔性材料密度仪,液体密度计,固体颗粒体积测试仪,磁性材料密度仪。

通常对DCDC电路设计,要计算峰值(PEAK)电流和均方根(RMS)电流,通常规格书中会给出计算公式。

温升电流是对电感热效应的评估,根据焦耳定律,热效应需要考虑一段时间内的电流对时间的积分;选择电感时,设计RMS电流不能超过电感温升电流。

为了保证在设计范围内电感值稳定,设计峰值电流不能超过电感的饱和电流。

为了提高可靠性,降额设计是必须的,通常建议工作值应降额到不高于额定值的80%。当然降额幅度过大会大幅提高成本,需要综合考虑。

直流电阻

电感的直流电阻会产生热损耗,导致温升,降低DCDC效率;因此,当对效率敏感时,应选择直流阻抗低的电感,例如15毫欧。

还有就是根据产品的应用温度要求、是否需要满足RoHS、汽车级Q200等标准的要求、还有PCB结构限制。

大电流的应用,电感的漏磁就会相当可观,会对周围电路,例如CPU等造成影响。我之前就遇到过X86的CORE电的电感漏磁造成CPU无法启动的现象。因此,大电流应用,应选择屏蔽性能好的电感并且Layout时注意避开关键信号。

3.2去耦电感

去耦电感也叫Choke,教科书上通常翻译成扼流圈。去耦电感的作用是滤除线路上的干扰,属于EMC器件,EMC工程师主要用来解决产品的辐射发射(RE)和传导发射(CE)的测试问题。

去耦电感,通常结构比较简单,大都是铜丝直接绕在铁氧体环上。个人觉得可以分为差模电感和共模电感。这里不再赘述共模和差模的概念。

差模电感

差模电感就是普通的绕线电感,用于滤除一些差模干扰,主要就是与电容一起构成LC滤波器,减小电源噪声。

对于220V市电,差模干扰就是L相到N相之间的干扰;对POE来说,就是POE+和POE-之间的干扰;对于主板上的低压直流电源,其实就是电源噪声。

差模电感选型需要注意一下几点:

•直流电阻、额定电压和电流,要满足工作要求;

•结构尺寸满足产品要求;

•通过测试确定噪声的频段,根据电感的阻抗曲线选择电感;

•设计LC滤波器,可以做简单的计算和仿真。

磁珠(FerriteBead),也常用来滤除主板上的低压直流电源的噪声,但磁珠与去耦电感有区别的。

•磁珠是铁氧体材料烧制而成,高频时铁氧体的磁损耗(等效电阻)变得很大,高频噪声被转化成热能耗散了;

•去耦电感是线圈和磁芯组成,主要是线圈电感起作用;

•磁珠只能滤除较高频的噪声,低频不起作用;

•去耦电感可以绕制成较高感值,滤除低频噪声。

磁珠等效电路模型

共模电感 

共模电感就是在同一个铁氧体环上绕制两个匝数相同、绕向相反的线圈。

如上图所示的共模电感:

当有共模成分流过共模电感时,根据右手定则,会在两个线圈形成方向相同的磁场,相互加强,相当于对共模信号存在较高的感抗;

当有差模成分流过共模电感时,根据右手定则,会在两个线圈形成方向相反的磁场,相互抵消,相当于对差模信号存在较低的感抗。

换一个方式理解:当V+上流过一个频率的共模干扰,形成的交变磁场,会在另一个线圈上形成一个感应电流,根据左手定则,感应电流的方向与V-上共模干扰的方向相反,就抵消了一部分,减小了共模干扰。

共模电感主要用于双线或者差分系统,如220V市电、CAN总线、USB信号、HDMI信号等等。用于滤除共模干扰,同时有用的差分信号衰减较小。

共模电感选型需要注意一下几点:

直流阻抗要低,不能对电压或有用信号产生较大影响;

用于电源线的话,要考虑额定电压和电流,满足工作要求;

通过测试确定共模干扰的频段,在该频段内共模阻抗应该较高;

差模阻抗要小,不能对差分信号的质量产生较大影响;

考虑封装尺寸,做兼容性设计。例如用于USB信号的共模电感,选择封装可以与两个0402的电阻做兼容,不需要共模电感时,可以直接焊0402电阻,降低成本。

下图是某共模电感的共模阻抗和差模阻抗。

如果共模干扰频率在10MHz左右,滤波效果很好,但如果是100kHz,可能就没什么效果。如果差分信号速率较高,100M以上,可能就会影响信号质量。

高频电感在射频电路中主要有以下几种作用:

匹配(Matching):与电容一起组成匹配网络,消除器件与传输线之间的阻抗失配,减小反射和损耗;

滤波(Filter):与电容一起组成LC滤波器,滤出一些不想要的频率成分,防止干扰器件工作;

隔离交流(Choke):在PA等有源射频电路中,将射频信号与直流偏置和直流电源隔离;

谐振(Resonance):与电容一起构成LC振荡电路,作为VCO的振荡源;

巴仑(Balun):即平衡不平衡转换,与电容一起构成LC巴仑,实现单端射频信号与差分信号之间的转换。

之前介绍的三种结构,都可以用来制作高频电感,下面介绍下他们的特点:

多层型

多层型通过烧结,形成一个整体结构,或叫独石型(Monolithic)

图出自MurataChipInductorCatalog

多层片状电感的,相比于其他两种就是Q值最低,最大的优势就是成本低,性价比高,适合于大多数没有特殊要求的应用。TDK和TaiyoYuden的高频电感都只有多层型,没有绕线型和薄膜型。

TDK的MLK系列、Murata的LQG系列、TaiyoYuden的HK系列,这三个系列的产品基本一样,最便宜,性价比高。

当然随着工艺技术的提升,现在也有高Q值系列的多层片状电感,例如TDK的MHQ系列、太阳诱电的HKQ系列。

TDK的多层电感做的更好更全,还有一个MLG系列,有0402封装,感值可以做0.3nH,ValueStep0.1nH,容差0.1nH,接近薄膜电感的性能,价格还便宜。

绕线型

现在的工艺水平已经越来越高,绕线电感也可以做到0402封装。

图出自MurataChipInductorCatalog

绕线型工艺,其导线可以做到比多层和薄膜结构粗,因此可以获得极低的直流电阻。也意味着极高的Q值,同时可以支持较大的电流。将无磁性的陶瓷芯换成铁氧体磁芯,可以得到较高的感值,可以应用与中频。

Murata的LQW系列可以做到03015封装,最小感值1.1nH;Coilcraft的0201DS系列,可以做到0201封装,号称世界上最小的绕线电感。

薄膜型

采用光刻工艺,工艺精度极高,因此电感值可以做到很小,尺寸也可以做到很小,精度高,感值稳定,Q值较高。

图出自MurataChipInductorCatalog

Murata的LQP系列,可以做到01005封装,高精度产品的容差可以做到0.05nH,最小感值可以到0.1nH,这三个参数值可以说是当前电感的极限了。其他,像Abracon的ATFC-0201HQ系列也可以做到最小0.1nH。

Murata有三种工艺的高频电感,选择了同感值(1.5nH)、同封装、同容差的电感对比。

可以看出绕线型的Q值明显高于其他两种,而薄膜型的电感值的频率稳定性高于其他两种。当然,多层型的成本明显低于其他两种。

选择高频电感时,除了需要确定电感值、额定电流、工作温度、封装尺寸外,还要关注自谐振频率、Q值、电感值容差、电感值频率稳定性。

电感值通常需要根据仿真、实际调试或者参考设计来确定。大多数情况,多层片状高频电感已能满足要求,一些特殊场合可能需要关注:

电感值较大,自谐振频率较低,需要注意工作频率应远低于自谐振频率。

大功率射频设备,PA偏置电流较大,需要选择绕线型以满足电流要求;同时大功率设备温升较高,需要考虑工作温度;

对于一些宽带设备,需要电感值在带宽内稳定,那么应选择薄膜电感;

对于高精度的VCO电路中,作为LC谐振源,只有薄膜电感能提高0.05nH的容差;

有一些高频电感具有方向性,贴片安装的方向对电感值有一定影响,如下图所示:

引自Whyisthereadirectionmarkoninductors?

可以看出,标记点朝侧面,感值变化较大,所以贴片时应注意让电感上的标记点朝上。

另外,Layout时,应注意两个电感不能紧邻着放置,至少距离20mil以上。原因就是磁场会相互影响,从而影响感值,参考前文共模电感示意图。

结语:选型要清楚器件的原理和应用,综合考虑成本、降额、兼容性等多种因素。

来源:面包板社区

声明:本文内容系作者个人观点,不代表传感器专家网观点或立场。更多观点,欢迎大家留言评论。

如有投稿爆料采访需求,请发邮箱:sensorexpert@sensorexpert.com.cn。

推荐阅读:

电感规格参数详解

贴片功率电感最常用的规格尺寸有:CD32/CD43/CD54/CD75/CD105

贴片功率电感封装尺寸图:

规格型号   规格尺寸(LxWxH)    电感量                  额定电流     

 CD31      3.5x3.0x1.6mm    0.33uH~390uH    0.13~0.45A

 CD32      3.5x3.0x2.1mm   1uH~680uH        0.1~2.2A

 CD42      4.5x4.0x2.1mm   2.2uh~330uh            0.1~2A

 CD43      4.5x4.0x3.2mm   1uH~1000uH         0.08~3A

 CD52      5.8x5.2x2.1mm   2.2uH~220uH        0.25~2.4A

 CD53      5.8x5.2x3.0mm   1.5uH~1000uH     0.14~3.1A

 CD54      5.8x5.2x4.5mm   1uH~1000uH         0.12~4.6A

 CD73      7.8x7.0x3.5mm   1.5uH~470uH         0.3~5A

 CD75      7.8x7.0x5.0mm   1uH~2200uH         0.1~5.5A

 CD104      10x9x4.0mm     10uH~1000uH       0.4~4.5A

 CD105      10x9x5.4mm     3.3uH~1800uH    0.18~6A

更多贴片功率电感封装尺寸资料知识:http://www.cenkersz.com/cko.html

电感型号大全图解

村田电感我们知道分为很多种类,每种各类的用途也不尽相同,不了解的同学只有知道特定型号时才能知道他的参数和使用范围,本文将对村田电感的尺寸及常用型号及参数整理成表,方便大家使用。

高频电感器被广泛用于具有无线通信功能的RF部分的匹配用途和扼流电感线圈用途。

1、先来说说一般用的,尺寸为0.8×0.4mm以下品名:

高频用型号表:

2、一般用尺寸为:1.0×0.5mm以上品名

高频用(1.0×0.5mm以上)

 扼流/谐器电路用(1.0×0.5mm以上)

3、汽车用,主要用在:汽车导航系统/汽车音响等娱乐设备和雨刮器、电动车窗等车身控制系列设备中使用的产品、上述用途以外,动力传动、安全系统设备等追求高可靠性用途的设备中使用的产品

高频用(Infotainment)

高频用(Powertrain)

扼流/谐器电路用(Infotainment)

专访村田中国总裁:MLCC缺货将持续三大领域是未来重点

【视频】:天线周边用ESD保护装置解决方案——介绍

村田电容在使用时应该在温度特性上如何区分?

使用片状铁氧体磁珠的注意事项

ESD保护装置的小型化提案

天线周边用ESD保护装置解决方案

高速数据通信用ESD保护装置解决方案

详解陶瓷电容器用陶瓷材料的物理常数

电容器的发热特性你了解,测量方法你了解吗?

村田氧化银电池的特点及应用

村田碱性纽扣电池的特点及应用

一文了解村田硬币型二氧化锰锂电池的特点及应用

村田携丰富的产品阵容亮相“ELEXCON2017”

村田超小尺寸的编码器开关microES即将量产

满足市场需求,村田微型电池产品阵容不断扩大

村田陶瓷电容器有哪些种类?你知道吗?

紧跟技术潮流,村田抢占LPWAN市场先机

射频电感器之阻抗匹配的那些事儿~

【视频】UMA系列教程(3)——应用实例:备份

【视频】:UMA系列教程(3)——应用实例:能量收集

村田陶瓷电容器系列的安全规格认证证书公布下载了!!!

 如需了解其他内容,请关注后反馈给我

电感型号参数大全

那只是一个生产厂商的各类电感型号。