主页 > 型号大全 > 正文

能谱仪型号(能谱仪价格)

2024-04-12 14:17:34 来源:阿帮个性网 点击:
文章目录导航:
  1. 能谱仪操作步骤
  2. 能谱仪结构及工作原理
  3. 能谱仪价格
  4. 能谱仪品牌
  5. 能谱仪优点
  6. 能谱仪最大的优点
  7. 能谱仪定义
  8. 能谱仪使用方法
  9. 能谱仪用途

能谱仪操作步骤

所谓能谱仪实际上是一种电子仪器,主要单元是半导体探测器(一般称为探头)和多道脉冲高度分析仪器,用以将X光量子按能量展谱。

能谱仪结构及工作原理

基于高重复频率、高通量高次谐波光源的超快角分辨光电子能谱仪(HHG-TRARPES),并通过了专家的现场测试。

该仪器系统配备了六轴低温样品台,DA30半球分析器,极限真空优于10-10torr,最低温度小于6K,其光子能量连续可调(20-60eV),重复频率为0.4MHz。第18阶次光子(21.6eV)的能量分辨率为109meV,时间分辨率为120fs,样品位置处的光通量约为1011ph/s,综合参数达到世界同类型设备的一流水平。此外,全设备接入自主开发的控制系统,实现了集成化、智能化、便捷化操作,时间和角度联动扫谱,内置真空自锁与保护功能。

目前实验装置已经进入稳定运行阶段,实现了对拓扑绝缘体Bi2Se3未占据态和电荷密度波材料1T-TiSe2能带动力学演化过程的测量。

这一设备的搭建完成,填补了国内相关领域的空白,为未来研究量子材料中电子的超快动力学过程、未占据态以及新型电子态提供了关键的实验平台。

能谱仪价格

准原位X射线光电子能谱仪

01

仪器介绍

型号:ESCALABXi+

ESCALABXi+是一款数字化多功能光电子能谱仪,可以高精度完成各种材料样品表面的元素成分、价态、相对含量、浓度掺杂及表面、深度分布等功能分析。其配备了一套准原位处理系统,可以对XPS样品进行升降温处理,从而分析高温与反应气氛处理前后的元素价态与组分含量的改变。

02

应用范围

对固体样品表面进行点扫、线扫、面扫,从而对元素的价态、定性、定量进行分析;

XPI成像功能、微区回溯成谱,可得到样品表面元素的二维分布信息;

对样品深度剖析,配有离子刻蚀、角分辨XPS(可计算膜厚);

测试离子散射能谱,其探测深度为一个单原子层;

测反射式电子能量损失谱,得到H元素含量。

03

功能参数

1、X射线源类型:Monochromated,AlK-Alpha

2、XPS单色指标:最小能量分辨率0.43eV@60kcps(Ag3d5/2)

3、 XPS成像分辨率:<3μm

4、ISS:分辨率优于12eV时,灵敏度>25kcps

5、REELS:分辨率优于0.5eV时,灵敏度>1Mcps

6、样品的测试与分析尺寸:20μm~900μm之间连续可调

04

放置位置

能源基础楼(5号楼)212-1

05

联系人

联系人:崔瑾

电  话:18811687113

邮  箱:cuijin@dicp.ac.cn

能谱仪品牌

1。目前口碑最好的牌子是热电的尼高力光谱系列。2。***说过:决定战争胜败的因素在人不在物。同样,数据是否准确的关键是由样品的处理是否合适、标准曲线的制作是否精密、分析操作是否规范等因素决定的。只要光谱仪没有损坏,那么仪器的精度对分析结果的准确度造成的影响是很小的,几乎可以忽略不计。

能谱仪优点

能谱仪是用来对材料微区成分元素种类与含量分析,配合扫描电子显微镜使用。包括以下几指标:探头:一般为Si(Li)锂硅半导体探头探测面积:几平方毫米分辨率(MnKa):~133eV探测元素范围:Be4~U92使用范围:1、高分子、陶瓷、混凝土、生物、矿物、纤维等无机或有机固体材料分析;2、金属材料的相分析、成分分析和夹杂物形态成分的鉴定;3、可对固体材料的表面涂层、镀层进行分析,如:金属化膜表面镀层的检测;4、金银饰品、宝石首饰的鉴别,考古和文物鉴定,以及刑侦鉴定等领域;5、进行材料表面微区成分的定性和定量分析,在材料表面做元素的面、线、点分布分析。

能谱仪最大的优点

题主是否想询问“早期自然伽马能谱仪型号是”早期自然伽马能谱仪型号是NIM-2。根据查询相关公开信息显示,早期自然伽马能谱仪的型号是NIM-2,是由美国国家仪器公司于1958年推出的一种能谱仪。该型号的自然伽马能谱仪主要用于地质勘探、核地球化学、环境监测等领域,可以测量天然放射性元素的能谱分布和含量,如铀、钍、钾等元素,具有较高的测量精度和稳定性。

能谱仪定义

化学分析仪

色谱

 

气相色谱(GC) | 微型、便携式气相色谱仪 | 液相色谱(LC) | 色谱高压泵 | 薄层色谱(TLC) | 离子色谱(IC) | 毛细管电泳(CE) | 氨基酸分析仪 | 制备液相色谱 | 凝胶渗透色谱(GPC)/凝胶色谱 | 柱温箱 | 高速逆流色谱 | 色谱检测器/紫外检测器/蒸发光检测器 | 超临界流体色谱仪 | 顶空进样器 | 自动进样器(多功能) | 柱后衍生装置 | 轴向压缩系统 | 吸附管老化、活化仪 | 馏分收集器 | 热解析仪、热解吸仪、热脱附仪 | 场流分离仪 | 热裂解器 | 其它色谱仪及分离设备

 

光谱

 

便携式分光光度计 | 紫外、紫外分光光度计、紫外可见分光光度计、UV | 红外光谱(IR、傅立叶) | 近红外光谱(NIR) | 分子荧光光谱 | 激光拉曼光谱(RAMAN) | 光纤光谱仪 | 原子吸收光谱(AAS) | 原子荧光光谱仪(AFS) | ICP-AES/ICP-OES | 光电直读光谱仪 | 辉光放电光谱仪 | 火焰光度计 | 光栅光谱仪(单色仪) | 圆二色光谱 | 穆斯堡尔光谱仪 | 气相分子吸收光谱仪(GMA) | 光谱部件及外设 | 太赫兹时域光谱仪 | 激光诱导击穿光谱仪(LIBS) | 微波等离子体光谱仪(MPT、MIP) | 其它光谱仪

 

质谱

 

气质联用(GC-MS) | 便携/车载GC-MS | 液质联用(LC-MS) | 等离子体质谱ICP-MS | 生物质谱/MALDI-TOF | 气体质谱/在线质谱 | 氦质谱检漏仪 | 二次离子质谱 | 辉光放电质谱仪 | 同位素质谱仪(Isotoperatiomassspectrometer) | 激光剥蚀进样系统 | 有机质谱仪(Organic-MASS) | 无机质谱仪(Inorganic-MASS) | 气溶胶飞行时间质谱 | 测试专场 | 质谱部件及外设 | 其它质谱仪

 

X射线仪器

 

X荧光光谱、XRF(能量色散型X荧光光谱仪) | X射线衍射仪(XRD) | X射线应力分析仪 | X荧光光谱、XRF(波长色散型X荧光光谱仪) | 电子探针X射线微区分析仪(EPMA) | X光电子能谱仪(XPS/ESCA) | X射线定向仪 | X射线(衍射)仪/能谱仪部件及外设 | X射线散射仪 | 俄歇电子能谱(AES) | X射线探测装置 | 其它X射线(衍射)仪

 

电化学仪器

 

电化学发光检测仪 | PH计、酸度计 | 自动电位滴定仪 | 卡氏水分测定仪/卡氏水份测定仪 | 电导率仪、电导仪、盐度计 | 电化学工作站、恒电位仪 | 极谱仪、伏安仪 | 库仑仪 | 石英晶体微天平 | ORP测量仪 | 腐蚀测试仪 | 电化学仪器部件、外设 | 电解水分测定仪 | 酸碱浓度计 | 电解仪 | 其他电化学仪

 

元素分析仪

 

碳硫分析仪(红外碳硫仪) | 定氮仪、凯氏定氮仪、Dumas定氮仪 | 有机元素分析仪 | 测汞仪 | 金属多元素分析仪 | 氧氮分析仪(氧氮氢分析仪) | 硫氮分析仪 | 钙铁煤分析仪 | 碳硅分析仪 | 其它元素分析仪

 

波谱

 

核磁共振(NMR) | 电子自旋(顺磁)共振波谱仪(ESR) | 其它波谱仪

 

水分测定仪

 

电容水分测定仪、电阻水分测定仪 | 露点水分测定仪、露点仪 | 水份测定仪、红外水份测定仪、卤素灯水份测定仪 | 微波水分测定仪 | 其它水分测定仪 | 高频水分测定仪 | 其它

 

其他通用分析仪器

 

流动分析仪/流动注射分析仪(FIASFACFA) | 感官智能分析系统(电子鼻/电子舌) | 离子迁移谱仪 | 形态分析仪 | 其它通用分析

 

各种分析仪器功能及型号

欢迎大家在留言区补充其他分析仪器名称和型号!

能谱仪使用方法

简单说,就是根据射线粒子的能量,来分析物质的成份、含量。如γ射线能谱仪主要根据射线的能量判定核素,并分析放射性核素含量,在环境检测、辐射防护、反应堆监控等广泛应用。

能谱仪用途

10.2.2.1测量装置

(1)碘化钠NaI(Tl)γ能谱仪

以NaI(Tl)(碘化钠)闪烁体与光电倍增管组成探测器的γ能谱仪已有40余年的应用历史。由于它具有探测效率高、价格便宜和维护容易等优点,目前仍用于环境样品的γ能谱分析,但由于能量分辨率较差,应用受到了限制。一般,NaI(Tl)γ能谱仪仅用于分析:①天然放射性核素238U系,232Th系和40K;②具有简单γ能谱的人工放射性核素,如60Co和137Cs等;③经放射化学分离后的单个核素或具有简单γ能谱的多个核素样品。

低本底NaI(Tl)γ能谱仪结构较简单,由NaI(Tl)探头、屏蔽体、放大器和多道分析器等组成。较复杂的是低本底反符合NaI(Tl)γ能谱仪,国产的典型型号是FH-1906。它在NaI(Tl)γ能谱仪的基础上增加了符合、环反符合NaI(Tl)晶体和相应的符合、环反符合电子学线路,使探测装置降低本底;降低康普顿散射,减小高能峰对低能峰的干扰、降低能量探测限。

(2)Geγ谱仪

以Ge(锗)半导体为探测器的γ谱仪分为Ge(Li)(锂漂移锗)γ谱仪和HPGe(高纯锗)γ谱仪两种,优点是能量分辨率高,适合于复杂γ能谱的分析测量;缺点是探测效率较低,价格较贵,维护较困难。Ge(Li)γ谱仪是20世纪60年代初发展起来的,70年代广泛地应用于环境放射性测量;但目前已被HPGeγ谱仪所取代。因为:①HPGeγ谱仪虽然也必须在液氮冷却下使用,但不像Ge(Li)γ谱仪那样必须在液氮冷却下保存,维护较容易;②HPGeγ谱仪能制成更大的体积,可改善探测效率;③HPGeγ谱仪测量能区更宽,比如N型HPGeγ谱仪测量能区为5keV~10MeV,能分析测量低能γ和X射线;④HPGeγ谱仪修复较容易。

HPGeγ谱仪种类较多,从制造的材料来分,有P型和N型;从探测器的结构来分,有平面型和同轴型,其中P型同轴HPGe还包括扩展型(xtRa)和井型。对环境样品的分析测量,通常选用P型同轴HPGeγ谱仪,因为价格相对较便宜。测量低能γ和X射线选用平面型HPGe。N型和扩展型HPGeγ谱仪,也能有效地探测γ和X射线,但会产生严重的级联符合相加效应,给解谱和效率刻度带来困难,当实验室具备较好的符合相加效应的校正能力时,应避免使用N型和扩展型HPGeγ谱仪。HPGeγ谱仪也只有特别需要高效率探测器的实验室愿意采用。

低本底HPGeγ谱仪的结构与低本底NaI(Tl)γ谱仪类似。通常只有一个Ge主探测器,也可加NaI(Tl)环晶体或塑料环闪烁体组成反符合屏蔽γ谱仪。Geγ谱仪对电子学部分要求较高,比如多道分析器的内存应在4k以上,最好有足够的缓冲区,供γ能谱的前台使用,对屏蔽体的要求与NaI(Tl)γ谱仪一样。屏蔽体可分为简单铅屏蔽体(壁厚10cm)、简单钢屏蔽体(壁厚20cm)和以铅或钢为主体的交替物质屏蔽体。屏蔽体的内径不宜很大,以易于放入凹杯(Marinalli杯)或反符合环闪烁体为宜,即略大于20cm。因为环境样品通常为体样品,屏蔽体内壁的散射对样品测量的影响不大,且较大的内壁空腔包含有较多的气体,空气中氡子体浓度的变化对本底的影响较大,干扰对样品(特别是天然放射性环境样品)的测量。

10.2.2.2γ能谱仪的刻度

(1)能量刻度

γ能谱仪的能量刻度是指确定能谱中能量与多道分析器道址的关系,即道址与γ射线能量的关系。在谱仪系统测量条件确定的情况下,能量刻度的精度主要取决于刻度源的能量特性和活度;决定于刻度用γ射线能量的分布和精度、谱仪系统的能量分辨率和稳定性。

NaI(Tl)γ谱仪能量分辨率较差,宜用单能γ射线源进行刻度,但单能γ源较少,有时也选择几种能量且能量相差较大的γ射线源。一般用137Cs源等。

Geγ谱仪的能量刻度可选用发射多种能量的γ射线源,比如152Eu,也可用混合核素的γ源。用于能量刻度的γ射线源的活度应适中,其γ射线能量应有较高的精度,其谱峰应尽量覆盖整个测量能区。一般用152Eu源。

实验测得的刻度数据由下式进行最小二乘拟合

环境地球物理学概论

式中:C是能量为E(keV或MeV)的γ射线全能峰峰位的道址,量纲一;An为拟合参数,keV;N为拟合多项式的阶数,一般取2。

γ谱仪能量刻度的频度取决于谱仪的工作稳定性。在连续工作的情况下,γ谱仪的稳定性较好,不需要经常作能量刻度,但当发现或怀疑不稳定时,则需重新作能量刻度。

顺便指出,在进行能量刻度时,也可进行能量分辨率刻度,即求出谱仪全能峰半高宽(FWHM,keV)与γ射线能量或峰位之间的关系。它不但是说明谱仪能量分辨率的指标,而且在解谱中有用。拟合公式如下

环境地球物理学概论

式中:Wn为拟合参数;N一般取2。

(2)效率刻度

全能峰探测效率ε定义为γ谱仪测出的刻度源中能量为E(keV)的γ射线全能峰净计数率n0(cps)与刻度源中该γ射线的发射率A0P之比值,即

环境地球物理学概论

式中:A0为刻度源的活度,Bq;P为该γ射线的分支比,量纲一。

全能峰探测效率ε不仅与γ射线的能量有关,还与源的形状、介质成分、源和探测器的相对位置以及γ射线是否级联有关,也依赖于具体的探测器本身。效率刻度,即是通过实验或理论计算确定的,某γ谱仪具体测量条件下,样品中某核素的某能量γ射线的探测效率ε。

根据刻度源的几何形状,可分为点源刻度、面源刻度和体源刻度。环境样品大多是体样品,通常就近正放在探测器表面(带有样品支架),因此应重点考虑近源-探测器距离条件下的体源刻度。

实验刻度是基本方法。刻度源最好采用可溯源传递的国内外标准源或标准参考源,也可购买标准源溶液和标准参考物质自己制备,并由计量部门予以标定确认。配制时应特别注意均匀性。国内研制的标准源或标准参考物质的介质,主要有土壤、矿粉和河泥等,核素主要有天然放射性核素238U系、232Th系和40K,人工放射性核素60Co,137Cs和152Eu等。

NaI(Tl)γ谱仪宜选用和待测样品核素相同或能量相近的刻度源,测量标准谱,然后用剥谱法、逆矩阵法或最小二乘法解谱分析。Geγ谱仪的效率刻度有直接比较法和效率曲线法,其中效率曲线法应用范围广,可选用多个单能源、发射多种能量的γ射线源或混合源。

理论计算有数值积分法和蒙特卡罗法。数值积分法常与实验刻度结合进行。蒙特卡罗法主要适合于复杂的源-探测器几何条件,其基本原理是直接模拟光子在源和探测器中的行为,利用随机抽样方法,直接跟踪每个光子和电子,最后确定能量沉积谱,进而计算全能峰探测效率,也可计算实验刻度中需要的某些物理量。缺点是需要精确知道探测器的结构尺寸和源的介质成分。目前国内已有几家实验室进行了这项工作,不具备条件的实验室可以从合格的实验室购买。

A.直接比较法:对某种放射性核素,当样品和源的几何形状、介质成分、表观密度和放置位置完全一样时,可用下式确定样品中该核素的活度A(Bq)

环境地球物理学概论

式中n为测得的样品全能峰净计数率,s-1。

这种方法是最基本、最可靠的。但由于环境中放射性核素种类较多,环境介质成分复杂,形态各异,具体应用受到限制。

B.效率曲线法:效率曲线刻度法是常用的效率刻度方法。选择与样品几何形状、介质成分和表观密度相同的刻度源,γ射线能量(Ei,keV)大致均匀地覆盖于整个能区,测定出相应的全能峰效率e(Ei),用下式拟合出整个能区的全能峰效率ε

环境地球物理学概论

式中:E0可取任意值,keV;Bn为拟合参数,量纲一;N一般取2。

在环境样品测量中,若样品和刻度源的几何形状、介质成分和表观密度相近,即可使用上述效率曲线。但当与上述条件相距较远时,特别是在较低能区,应进行样品的自吸收修正。刻度源中如有级联辐射,还应进行符合相加修正,本文从略。仅将自吸收修正略述如下:

自吸收修正也有实验方法和理论计算方法两种。下面介绍一种半经验公式法。该方法适用于圆柱形环境样品,且样品厚度小于5cm,样品直径不应大于探测器直径的两倍。

a.原理:如不考虑圆柱形刻度源与样品的自吸收差别(刻度源与样品的直径和厚度相同,下同)的影响,探测器对样品的全能峰效率ε(E,H)可近似地表示为(忽略角响应)

环境地球物理学概论

式中:εs(H)是刻度源对应于基准能量Eb的全能峰效率,只是样品厚度H(cm)的函数;F(E)是以能量Eb对全能峰效率归一的相对峰效率,是γ射线能量E的函数,与样品厚度及组成无关。

实验证明,刻度源的基准能量Eb的全能峰效率ε(H)的倒数与H近似为线性关系,即

环境地球物理学概论

式中:a,b为待定常数。a量纲一;b,cm-1。

将a=1/ε0,b=1/(Dε0),ε0为直线与ε-1(H)轴的交点,D为直线外推与H轴的交点,代入式(10.2.22)得

环境地球物理学概论

当考虑自吸收对效率的影响时,样品与刻度源自吸收不同,引起的修正值Δε(H,E)为

环境地球物理学概论

式中:εa(H,E)和ε样(H,E)分别为能量为正时刻度源和样品的全能峰效率;μs和μ分别为能量为E时刻度源和样品的线衰减系数,cm-1。不同介质、不同厚度样品的不同能量的全能峰效率ε(H,E)为

环境地球物理学概论

在式(10.2.21)的推导过程中近似地用平行射束来描述射线的自吸收过程。因此,μs和μ必须用下面的方法测定:将一较强的152Eu面源分别放在样品(或刻度源)和空样品盒上面,测定各能量γ射线全能峰净计数率N(cps)和N0(cps),由下式计算μ

环境地球物理学概论

再由下式拟合出μ-E曲线

环境地球物理学概论

式中:Cn为拟合参数,量纲一;N一般取2。

b.实验和计算:相对峰效率由前文所述的效率曲线法刻度。基准能量Eb的全能峰由一组不同厚度的单能刻度源刻度,待定常数a,b由实验数据线性最小二乘法拟合得到。线衰减系数由原理部分要求的方法测定。自吸收不同引起的修正值由(10.2.22)式用数值积分计算。建议采用水溶液刻度源,因为便于配制。测定线衰减系数也可采用其他面源,只要发射的γ射线的能量大致均匀地覆盖于整个能区。

10.2.2.3放射性核素的定量分析

环境中的放射性核素,无论是大气、土壤或水体中受污染的核素,为了研究它们的来源和危害,首先需要确定是什么核素,还要知道量有多少。能谱分析,特别是高能量分辨率的高纯锗探测器低本底多道γ谱仪可以满足这一要求。

(1)碘化钠(NaI(Tl))探测器的γ能谱仪

NaI(Tl)γ谱仪由于能量分辨率不高,对于复杂组分的特征γ能量相近的核素定性分析比较困难。对于N个核素组成的样品,由于能量谱峰不能完全分开,进行能谱分析,只能根据每个核素的特征能量峰,选定包括该全能峰的道域(宽),每个道域的计数率Mi(cps)是各核素的贡献之和。很难求出净峰面积,只能测量各道区的总计数率(cps),建立与核素数目相等的联立方程(逆矩阵)求。

环境地球物理学概论

式中:xj(j=1,2,...,n)为第j个核素源的活度,Bq。建立N个方程组;aij为响应系数,量纲一。可根据i个刻度源测定的标准谱得到。由于各标准谱互不相同,各方程式是互相独立的,因此解方程组可求出n个Xj,即解出样品中各核素的活度(或含量)。

解方程组(10.2.28)的方法很多,一般用逆矩阵方法。先将(10.2.28)式,改写成矩阵形式

环境地球物理学概论

式中:A为aij集合而成的矩阵,称谱仪的响应矩阵;X为xj组成的列矩阵;M为各道宽计数Mi组成的列矩阵。将(10.2.29)改写成逆矩阵

环境地球物理学概论

(2)高纯锗(HPGe)γ能谱仪

对经过能量刻度,具有γ(x)能量数据库的高能量分辨率γ能谱仪。根据样品测得的γ能量谱,经过自动寻峰,可以很快确定样品中所含核素的种类。如果核素有两个以上的能量峰,互相验证,可以提高定性分析的准确性。

根据能量峰进行定量分析,要对被分析核素的全能峰进行选择。要选择峰值较高且无叠加干扰的全能峰;其次是尽量选择能量接近刻度源能区的全能峰;第三,如果干扰峰不可避免,要选择干扰容易扣除的全能峰;第四,天然核素如果子体达到放射平衡,子体的全能峰也是有效的。

核素活度(或核素含量)与测得的能量峰面积成正比,但应扣除包括康普顿散射在内的本底计数,得到净峰面积。净峰面积计算方法很多,有TPA法、Covell法、Wasson法、Sterlinski法和Quittner法等。下面介绍两种常用净峰面积计算方法。

A.全峰面积法(又叫TPA法)。这个方法的实质是先把全能峰内的所有各道计数相加起来,本底是按直线变化趋势,按梯形面积加以扣除,如图10.2.3所示。

按谱峰两侧的峰谷位置确定左右边界道,设左边道数为l,右边道数为r,则峰所占道数为r-l+1。包括本底在内的峰内各道总计数,即峰内各道计数之和yi,式中yi为第i道的总计数。假定峰是落在一个本底为直线分布的斜坡上,则本底(B)面积为图10.2.3中峰下的梯形面积。

环境地球物理学概论

图10.2.3两种峰面积计算方法

则全能峰内净面积

环境地球物理学概论

在TPA法中是按直线趋势扣除本底,如果只是单能峰,核素是正确的。如果有高能峰康普顿散射叠加本底,或在一个小峰附近,这样按直线趋势扣除本底就可能产生误差。另外还有统计涨落的误差。根据(10.2.30)式按统计误差计算净峰面积的均方差为

环境地球物理学概论

B.瓦生(Wasson)方法。此法与TPA法类似,但峰取用道数较少。本底基不准和统计误差对峰面积影响较小,但由于峰值取在斜坡上受分辨率变化影响较大。

净峰面积计算公式如下

环境地球物理学概论

式中:b-n和bn为左右边界道对应于TPA法中本底基线上的高度。净峰面积的均方误差为

环境地球物理学概论

(3)环境样品的活度浓度计算

求得样品中被测核素γ射线净峰面积,其活度A(Bq/kg或Bq/L)由下式进行计算

环境地球物理学概论

式中:T为谱测量时间,s;nb为本底峰或干扰峰的计数率,s-1;W为样品的质量或体积,kg或m3;C符为符合相加修正因子;λ为衰变常数,s-1;t为衰变时间,s;ε为全能峰的探测效率;P为该γ射线峰的分之比。

(4)γ能谱自动分析

目前提供使用的多道γ能谱仪,差不多都带有仪器操作程序和数据处理程序,直至完成活度计算,都是自动完成的。其功能包括:谱线光滑,自动找峰和核素识别,曲线拟合,求峰形参数和峰面积计算,系统刻度,进行活度计算。

这种自动分析的软件程序种类很多,如果有特殊需要,应当编制软件系统。