电动调节阀型号(电动调节阀型号表示)
电动调节阀型号有哪些
一、电动调节阀规格型号基本参数有哪些呢1、公称尺寸,它可用DN表示,指的是端部连接件的孔径。2、公称压力,组成部分为字母PN及纲量是1的整数数字,和调节阀管道系统部件的力学性能与尺寸有联系。3、压力温度额定值,它是说在对应温度下,在表压上显示的最大工作压力。4、阀门构造长度。5、连接焊段。二、流量调节阀如何调整呢它要参考自身调节部位的信号,当阀门的开度达到相应地点,就会使流量、压力、液体自动调整,调节阀通常可以分为直通单座式和直通双座式,这里面后者的流通能力优秀,不过平衡小,操作起来比较稳定,被广泛用在大流量、高压的环境下。
电动调节阀型号zazp-16
FD、FDH、FVD、FVDH等图例按顺序是280°c常开排烟阀,280°c电动常开防火排烟阀,止回阀,70°c防火阀,280°c防火阀。
F代表防烟防火,D代表风阀,V代表调节,H代表280*关闭,C代表常闭,B代表远控,M代表阀体手动,E代表电动。
扩展资料:
1、风量调节阀的特点
对开多叶风量调节阀接管尺寸与全国通风管道标准化规定的矩形风管尺寸相同。
风量调节阀叶片为对开式和顺开式,在通风、空气调节、空气净化系统中作为调节阀。
通过试验测定,风量调节阀的气密性好,其相对漏风量在5%左右,调节性能好。
2、风量调节阀结构特征
风量调节阀在叶片宽度全统一为四种规格,叶片状为菱形双叶片,叶片间采用软搭接,因此密闭性能良好。
风量调节阀阀体构架用2毫米镀锌板冷轧成型后,以二氧化碳气体保护焊接或由普通Q235板加工焊接而成;叶片用1毫米镀锌板冷轧为瓦楞形,两片合成点焊插方轴,或2毫米G235钢板冷压成形,单片冲孔插方轴或焊圆轴。
调节阀分手动、电动,按所用材料分:碳钢板、镀锌板、铝合金板、不锈钢板四种,阀体结构及规格尺寸相同。
3、风量调节阀适用范围
广泛用于工矿、民用建筑暖通空调系统,对空气流量进行精确调节,是实现各种环境下控制通风模式的关键设备之一。其主要特点是运转灵活、噪声低、泄露量小,(密闭型泄漏量百度百科-风阀
电动调节阀型号表示方法图解
所有采暖、空调系统应达到两个主要目的:
1.提供要求的舒适度;
2.以最少的能耗达到以上目的。
但实际上,即使是最复杂的控制系统也不能带来满意的效果,而且运行成本较高。
1.在某些地方太热,在某些地方太冷;
2.在一些房间里回设之后的启动比较困难;
3.装机功率不能充分利用;
4.比预期的能耗更高。
水力失调(不平衡)的常见现象
1、流量失调的常见现象
系统冷热不均:
A、供热(冷)时近热远冷(近冷远热)。
B、某些支路水量偏大或偏小。
变流量系统运行失调。
负荷稳定,但房间调节阀动作频繁,造成房间温度震荡频繁。
水泵的运行能耗过高。
系统稳定时间过长。
2、压力失调的常见现象
调节阀产生噪音和振动。
调节阀关闭不上,严重时有烧阀危险。
调节阀阀权度过小,阀门曲线变形,线性散热受控系统变成上抛性散热受控系统。
系统冷热不均现象
下图中是一个典型的异程式系统,假设各个末端的阻力相同,各支管管径相同,则近端支管的水量会多于远端支管的水量,原因是近端支管的资用压头大于远端支管。系统越大、支管数越多、干管越长、干管比摩阻越大,失调的现象越严重。如果某个支管阻力过大,会造成水量的不足。
变流量系统运行失调现象
常见于使用静态平衡阀的变流量系统,调试时即使各个末端已经调试平衡,当实际使用时,当某些末端调节或关闭时,会造成其他末端两端的压差变化,从而因此其他未调节末端水量的变化,从而引起失调,这种失调现象是一种动态的失调现象。
负荷稳定,但调节阀动作频繁
产生动态失调后,由于通过末端的水量发生变化,因此房间温度也发生波动,温控器控制调节阀调整水量。而此时该房间的负荷没有发生任何变化,调节阀的调节动作是由于系统压力波动产生的。
变流量系统应该:
调节阀负责能量控制,仅当负荷发生变化时动作,而平衡阀负责压力控制,负责吸收系统的压力波动。
系统稳定时间过长
一个空调系统如果不能够保持调节阀开度和散热设备散热量之间的良好线性关系,则会造成受控房间温度波动频繁,系统稳定时间过长。
调节阀产生噪音和振动现象
根据连续流方程,水在流经调节阀的时候有一个加速和减速的过程,对应的动压也有一个升高和降低的过程,根据伯努力方程,静压有一个下降和上升的过程,当某点的静压下降到该点水温对应的汽化压力时,该点将出现气泡,发生“气蚀”现象,产生噪音和振动。
调节阀压降越大、水温越高(主要是冬季)越明显。
调节阀关闭不上,严重时有烧阀危险现象
当系统某些末端调节阀关闭时,由于干管流速降低,因此比摩阻变小,其他末端电动调节阀两端的压差升高,当升高到电动调节阀的关闭压差以上时,电动调节阀的驱动器已经无法提供足够的扭矩去关闭电动调节阀,造成阀门无法关闭的现象。这时末端处于过流状态,控制器将持续要求电机动作以关闭阀门,而事实却关闭不上,电机持续发热,如果驱动器没有过载保护功能,很容易发生烧电机的现象。
为什么水力系统要平衡
采暖及空调系统中水力平衡的技术是节能及提高供冷或供热品质的关键。
常见的问题
1.在供热或空调系统中,由于种种原因,大部分输送环路及冷热源机组环路存在水力失调,使得流经终端用户及机组的实际流量与设计流量不符。
2.多数水泵选型偏大或水泵运行在不合适的工作点处,导致水系统处于大流量、小温差运行工况,水泵运行效率低、热量输送效率低。
3.各用户处室温不一致、不稳定,近热源处室温偏高,远热源处室温偏低。近冷源处室温偏低,远冷源处室温偏高。
4.对热源或冷源机组来说,机组达不到其额定出力,使实际运行的机组台数超过按负荷要求的台数。
提高舒适度
保证室温达到设计要求,短时间内达到设定温度。
流量分配合理
水力平衡阀可以吸收超量压差,还可以控制及设定系统所需的流量。
节约能量,降低运行费用
在空调系统中温度每降低1℃,会造成能耗升高15%。
在供热系统中温度每升高1℃,会造成能耗升高10%
阀门的流通能力-Kv
1.定义:阀门两端的压差为1bar时,阀门全开时流经阀门的流量,以m3/h计。
2.计算:
3、公式推导:
对于调节阀,当阀门开度没有发生变化时,阀门的流通能力不变。仅当调节阀的开度发生变化时,阀门的流通能力才发生变化。
调节阀曲线与系统稳定时间的关系
如何实现盘管散热量和阀门开度的线性关系
由于盘管静特性为指数特性,因此为了达到良好的受控效果,通常采用对数型曲线的调节阀。只有保证一定的阀权度,才能保证阀门的实际曲线符合要求。由于盘管静特性与供水水温差有关,因此,小温差对于这个问题更敏感,所以这个问题在夏季空调设计中尤为重要,否则,系统稳定时间过长。
阀门理想流量特性
1:直线型:单位行程变化引起的流量变化相等。
2:抛物线型:流量特性为一条二次抛物线,介于直线与等百分比特性之间。
3:等百分比型:同样行程在小开度时流量变化小,大开度时流量变化大。
4:快开型:行程较小时,流量就比较大,阀的有效行程<d/4,多用于关断阀。
阀门理想流量特性的实现:阀芯形状
(1)直线特性阀芯
(2)等百分比特性阀芯
(3)快开特性阀芯
(4)抛物线特性阀芯
(5)等百分比特性阀芯(开口形)
(6)直线特性阀芯(开口形)
阀权度
阀权度的定义:
实现水力平衡的手段
1.静态平衡
水力计算、合理配管。
同程式。
静态平衡阀。
动态压差平衡阀或动态流量平衡阀。
2.动态平衡
动态压差平衡阀是解决动态失调的唯一途径。
平衡阀的分类
1.静态类平衡阀
手动平衡阀:又称静态平衡阀,平衡阀,通过手动调节阀门开度改变阀门的KV值,消耗多余的压差,测量通过该阀的流量和压降。
2.动态类平衡阀
动态流量平衡阀:又称动态平衡阀,自力式流量控制阀,在一定的压差范围内维持流量动态恒定(在一个区间内)。
动态压差平衡阀:又称压差控制器,维持压差在一定的范围内动态恒定(在一个区间内)。
手动平衡阀
原理:通过旋转手柄调节阀芯的上下运动,以改变阀门的Kv值,通过专用仪表连接阀门两端的测压点可以测量阀门的压降和通过流量,并可以锁定阀门的开度。
功能:
1.调节阀功能,精确调节KV值。
2.具有关断和测量阀门的压降和流量功能。
作用:消耗富余压差,使管路流量和压降与设计值一致,测量流量。
安装位置
定流量系统的管路,逐级安装,从末端支路到水泵出口的各个支路。
变流量系统的大分支处(仅当安装动态压差平衡阀的支路上的压差大于动态压差平衡阀的控制压差时才安装),末端安装动态压差平衡阀。
供水管或回水管安装均可,差别在于安装在供水管时,手动平衡阀的工作压力要大于回水管安装的情况,但是末端设备和电动调节阀的工作压力情况刚好相反。
选型和使用注意事项
选型:
按照Kv值选型,所选阀门的Kv值要大于设计值。
最小开度大于全行程的20%
阀门最小压降大于3KPa
使用注意事项:
A、不能采用蝶阀、闸阀、截止阀、球阀等关断类阀门代替手动调节阀。关断类的阀门曲线为上抛型曲线,调节灵敏性很差;而手动平衡阀的特性曲线接近直线特性,调节灵敏度较高。
B、不应串联安装,即同一环路不应供回水管同时安装手动平衡阀。
C、系统调试工作比较复杂,往往需要专业调试公司进行调试。
手动平衡阀的调试步骤
1.首先对干管、立管、支管、末端的手动平衡阀编号
2.计算各立管的流量比λ,找出有最大流量比的立管,如图λ1
3.计算各支管的流量比λ,找出有最大流量比的支管,如图λ1
4.计算各末端管路的流量比λ,找出有最小流量比的末端,如图λ1,,锁定该阀.
5.依次调整各阀的流量比和最小的末端流量比后锁定该阀;
6.依次调整干管和支管的手动平衡阀,方法相同,直至完成。
动态流量平衡阀
功能:动态流量平衡阀在压降31-600KPa之间保持流量恒定。
作用:保持通过该阀的流量恒定。
原理:当来流压力P1增大时,阀胆的套筒向下运动,压缩阀胆内的弹簧,同时减少阀胆底部阀孔的过流面积,即减少阀胆的Kv值。这样虽然阀胆两端的压差ΔP增大了,但是Kv值减小了,在弹簧的作用下两者的乘积即流量Q基本上保持不变。
安装位置
定流量系统的管路,末端安装,不需逐级。
一次泵系统冷冻水泵、冷却水泵处,防止台数变化时水泵过流。
冷却塔等需要恒定流量的场所。
供水管或回水管安装均可。
选型和注意事项
选型:仅按照流量选型。
使用注意事项:
A、阀门压力工作范围,要大于最小启动压差。
B、不能和比例积分的电动调节阀串联安装。
定流量系统水力平衡方案
动态压差平衡阀
原理:电动调节阀上游的高压通过导压管引导至控制膜盒下侧;电动调节阀下游的压力通过外部导压管或内部导压孔引导至控制膜盒上侧。
当高压侧的压力升高时,膜盒向上运动,带动阀杆、阀锥也向上运动,造成中压侧压力升高,从而动态的保持中压侧和高压侧之间的压力差与弹簧的预设力平衡,从而保证了电动调节阀两端压差的动态恒定。当高压侧的压力降低时,膜盒向下运动,情况类似。
调节弹簧的预紧力,即可调节压差设定值。
功能:动态保持受控点之间的压差恒定在设定值。
作用:
保证受控系统的动态水力平衡,防止系统出现动态失调。
防止电动调节阀调节阀产生噪音和振动。
系统中的调节阀门可选用驱动力较小的驱动器,避免烧阀危险。
为调节阀提供良好的阀权度,确保线性散热受控系统的实现,保证系统的迅速稳定。
调试工作量非常小,加速安装周期,系统改、扩建时可以免调试。
方便的修正实际和设计工况之间的差异。
最大流量限制功能。
保证受控系统的动态水力平衡
动态压差平衡阀动态保持受控点之间的压差ΔP恒定在设定值,其他未动作电动调节阀的Kv值不变,因此该支路的水量动态恒定。仅当电动调节阀动作时,即Kv值发生变化时,该支路的水量才会发生变化。
防止电动调节阀产生噪音和振动
调节阀门选用驱动力较小的驱动器
电动调节阀两端的压差恒定,系统的压力波动均由动态压差平衡阀吸收,因此调节阀门选用驱动力较小的驱动器。
为调节阀提供良好的阀权度
阀权度的定义:
安装位置
定、变流量系统的管路,末端安装,不需逐级。
变流量系统的管路,支管或立管安装,不需逐级。
单导压管的阀必须回水安装,双导压管的阀供水或回水管安装均可。
选型:阀体按照Kv值选型,所选阀门的Kv值要大于设计值,计算阀门Kv值时所用的是阀门压降,并非控制压差。用控制压差选驱动器。
动态压差平衡型电动调节阀
原理:实质就是一个动态压差平衡阀和一个电动调节阀合二为一,该阀为双阀锥结构,上阀锥为电动调节阀的阀锥,下阀锥为动态压差平衡阀的阀锥,动态压差平衡阀为电动阀阀锥(上阀锥)前后提供恒定的压差(0.2Bar或0.5Bar),系统的压力波动都被动态压差平衡阀吸收,当电动阀阀锥(上阀锥)没有动作时,阀门流通能力kv不变,压差ΔP不变,因此阀门的流量Q不变;只有当电动阀阀锥(上阀锥)的动作时,通过阀门的流量才会发生变化,从而实现了动态平衡和调节功能的完美统一。
过程:膜片的上下两端与内部弹簧的力量形成一个平衡,即P1=P2+P弹簧。
当系统压力发生波动,P1增加时,此平衡被破坏,膜片下方的力大于上方,因此膜片会向上移动,关小压差控制阀阀芯,使得P2增加,重新达到平衡,如图所示。
反之压差控制阀开大,使得调节阀阀芯的压差在整个开关的工作过程中始终保持恒定,这样经过该阀门的流量的变化仅与调节阀的开度一一对应。
安装位置
变流量系统的管路,末端安装,不需逐级。
主要优点:
1、占用的空间少,系统的自动平衡性好。
2、每组阀少了一个泄漏点。
3、安装、维修方便。
缺点:
1、不如分体方案(动态压差平衡阀+电动调节阀)灵活,分体方案的压差可以现场调节。
变流量系统水力平衡方案
水力失调常见现象的解决办法:
1.系统冷热不均;水泵的运行能耗过高→水力计算、合理配管;同程式;静态平衡阀;动态压差平衡阀或动态流量平衡阀、一体阀。
2.变流量系统运行失调;负荷稳定,但房间调节阀动作频繁,造成房间温度震荡频繁;系统稳定时间过长→动态压差平衡阀或一体阀。
3.调节阀产生噪音和振动;调节阀关闭不上,严重时有烧阀危险;调节阀阀权度过小,阀门曲线变形,线性散热受控系统变成上抛性散热受控系统。→动态压差平衡阀或一体阀。
水力失调与水力平衡
水力失调分为静态水力失调与动态水力失调。
1.静态水力失调是指由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求的系统管道特性阻力数比值不一致,从而使系统各户的实际流量与设计要求流量不一致,引起的水力失调,叫做静态水力失调。
静态水力失调是稳态的、根本性的,是系统本身所固有的,是暖通空调水系统中水力失调的重要因素。
通过在管道系统中增设静态水力平衡阀,在系统初调试过程中对系统管道特性阻力数比值进行调节,使其与设计要求一致,当系统总流量达到设计流量时,各空调单元也同时达到设计流量。
典型的静态水力失调系统:
由于没有安装静态水力平衡阀,虽然总流量与设计总流量一致,即:24.64=3*0.78+8.9+13.4。
但各个末端设备、空调箱、空气处理机组的流量与设计流量均不一致。
如:空气处理机组的实际流量15.6远大于设计流量13.4,导致过流;而空调箱的实际流量6.78远小于设计流量8.9,导致欠流。
典型的静态水力平衡系统:
由于安装了静态水力平衡阀,并且系统初调试合格。这时一方面系统总流量与设计总流量一致,即:24.64=3*0.78+8.9+13.4。
另一方面三个末端设备、空调箱及空气处理机组的实际管道流量均等于设计流量。
如:空气处理机组的实际流量13.4等于设计流量13.4;空调箱的实际流量8.9也等于设计流量8.9。
2.动态水力失调是指系统实际运行过程中当某些阀门开度变化引起水流量改变时,系统的压力产生波动,其他用户的流量也发生改变,偏离系统要求流量,从而引起的水力失调,叫做动态水力失调。
动态水力失调是动态的、变化的,不是系统本身所固有的,在系统运行的过程中产生的。
通过在管道系统中增设动态水力平衡设备,当其它用户阀门开度发生变化时,通过动态水力平衡设备的屏蔽作用,使自身的流量不发生变化,末端流量不互相干扰。
水力循环系统的三个条件
所有末端装置必须都能够达到设计流量。
通过控制阀的压差不能有太大的变化。
一二次环路水流量必须一致。
第一个水力工况条件
所有末端装置必须都能够达到设计流量。
对于需要安装同程管道的同程系统,因为系统的不平衡较大的单元将得到更多的流量。
自动流量平衡阀淘汰了同程管的使用,节余资金的同时提升系统的工作表现。
同程系统+手动平衡
输配系统
在刚开始启动时,最近的回路发生过流而损害了最后的回路的流量。
最不利环路的启动时间将相对较长。过流并不会成比例增加热量的输出。
当系统平衡时,起动将很快很好地达到设计所需的要求。当系统不平衡时,必须更早地开始工作(开机)。
在许多情况下,控制系统根本不能很好地控制两通阀门起动,负荷突然变化,温控装置的不理想设置。
在冬季室温每升高1度的成本:百分之6到11。
在夏季室温每降低1度的成本:百分之12到18。
一般的平衡方案
调整每个末端的流量至设计流量(当控制阀全开时),同时产生最小的额外压差。
各式各样的平衡方案
系统平衡方法
1.比例法:采用空气系统平衡方法,系统压降方面不是最佳;
2.补偿法:专门为设有平衡阀的系统而设计,系统压降最优;
3.平衡法:全电脑计算;自动判断最不利环路,系统压降最优。
第二个水力工况条件
通过控制阀的压差不能有太大的变化。对非线性特性进行补偿。
两通调节阀阀权度:
现实条件下,两通阀的尺寸选择过大以及根据系统要求流量变化而变化的压差导致阀权度远达不到要求。
在较低的系统要求下,只有很少的流量和管道摩擦力,导致作用于控制阀的压差增大。
一个很小的室温的变化可观的增加输出能量,结果=振荡控制。
压差的变化
在50%热输出时,系统中流量只有设计流量的20%,压降降至设计压降的4%。
所有的水泵资用压头作用于两通调节阀上。
过低的阀权度使调节控制工作如开/关阀!!
变化的压差造成的过低的阀权度导致昂贵的两通阀的工作状态象便宜的开/关阀门。
结果:温度高低波动。
怎样判断在哪些系统中压降的变化将显著影响控制能力?
工作过程
部分流量时典型阀权度–手动平衡
部分流量时典型阀权度–自动平衡
第三个水力工况条件
一二次环路水流量必须一致。
不同压差下工作状态
如下所示例子,压差范围14–210kPaD
解决冷冻机分步启动的问题
在没有自动平衡设备的条件下,即使每台冷冻机都安装一台泵,流量也会因为冷冻机分步启动而产生波动。
解决冷冻机分步启动的问题
对并联运行的定流量水泵,总流量由总的阻力决定-包括管道。
在系统没有自动平衡的条件下,当部分设备关闭时,管道中流量减少,泵头阻力减少,保持工作的泵加速运行产生过流。
在没有自动平衡设备的条件下,当管道中的流量降低,泵头的压力将导致泵速度的增加和持续工作设备的过流。
在冷机后安装平衡阀可以有效地解决问题。
当泵的工作数量变化时,自动平衡阀将根据系统阻力的变化调整以保持设计流量。
重要:检查阀门的最小和最大作用压差在阀门的调整范围内!
最大kPaD将在一台泵工作的时候得到。
自动平衡简化系统设计
自动平衡阀只需要装在空气处理机组,风机盘管,冷机,冷凝器等处。不需要模块设计。
水力循环系统的三个条件
使控制器发挥作用
确保暖通空调系统满足三个水力工况条件
定流量系统与变流量系统
1.定流量系统
定流量是指系统中不含任何动态阀门,主要用于末端设备无须通过流量来调节的系统,如风机盘官采用三速开关,空调箱采用变风量调节温度的空调系统以及系统要求较低,只需补偿器调节供暖水温即可满足需要的采暖系统。
定流量系统只存在静态水力失调,不存在动态水力失调,因此只要在相关部位安装静态水力平衡阀即可。
通常在系统机房的集水器以及关键的垂直、水平回水支管上安装静态水力平衡阀。
2.变流量系统
变流量是指在系统运行过程中各分支环路的流量随着外界环境负荷的变化而变化的。大部分时间系统流量是低于设计流量。
变流量系统一般即存在静态水力失调也存在动态水调,因些既要安装静态水力平衡阀,又要合理选择动态水力平衡设备。
通常在系统机房的集水器以及关键的垂直、水平回水支管上安装静态水力平衡阀。
在需要恒定流量的锅炉及冷机管路附近安装固定式动态流量平衡阀。
在需可调式动态流量平衡时采用静态阀与差压阀结合,对流量进行调节,主要用于重要分支管理及需精确调节的空气处理单元。
动态水力平衡设备可以取代静态水力平衡阀吗?
静态水力平衡阀有一个非常可贵的特点,当调试完毕后,既与系统中其他管件组成一体,它保证的不是系统中某一段管道的流量不变,它维持的是系统中各串并联管道间的流量比值与设计流量比值一致。当系统处于部分负荷运行状态时总流量减少时,系统中各分支管路会自动等比例的减少流量,而各分支管道的流量比值不变。
动态水力平衡设备是解决暖通空调水系统动态水力失调问题,使系统达到动态水力系统平衡,它的一个基本特征就是克服水力系统流量的变化,既在系统的压力波动时维持自身流量不变。
静态水力平衡阀:集水器回水管和总管、风机盘管各层水平供水管、主要的分支关路回水管。
动态流量平衡阀:冷水机组冷冻水、冷却水供水管、变风量系统的末端设备等需要流量维持恒定的部位。
动态平衡电动二通阀:风机盘管供水管组合阀(电动调节阀+动态流量平衡阀):空调箱、空气处理机组、新风机组等处。
静态水力平衡阀:集水器回水管和总管、风机盘管各层水平供水管、主要的分支关路回水管。
动态流量平衡阀:冷水机组冷冻水、冷却水供水管、变风量系统的末端设备等需要流量维持恒定的部位。
组合阀(电动二通阀VC+动态流量平衡阀):风机盘管FCU组合阀(电动调节阀+动态流量平衡阀):空调箱、空气处理机组、新风机组等处。
全能阀:空调箱、空气处理机组、新风机组等处。
动态流量平衡阀:冷水机组冷冻水、冷却水供水管、锅炉换热器供水管、变风量系统的末端设备、等需要流量维持恒定的部位。
电动压差阀:风机盘管各层水平回水管。
动态平衡电动二通阀:风机盘管供水管。
静态水力平衡阀:集水器回水管和总管。
动态浮动定压的变流量水力平衡系统
应用实例
风机盘管系统
下图为一个典型的动态压差平衡应用实例:
1、安装位置:在空调风机盘管水系统各层水平回水管上分别安装动态压差平衡阀;
2、设定压差:风机盘管系统各层水平回水管动态压差平衡阀设定压差应根据“在所有的风机盘管开启时,在最不利环路上的管路阻力值”来确定;
3、使用功能:
维持压差恒定功能:通过动态压差平衡阀保证各层风机盘管系统供回水管的压差不变,保证一方面层与层之间的风机盘管系统的调节不互相干扰,另一方面,同层风机盘管之间也不互相干扰(忽略延程阻力)。
风机盘管系统(电动调节阀)
下图为动态平衡电动调节阀在空调水系统中典型应用:
1、安装位置:在空调水系统各风机盘管供水管上安装动态平衡电动调节阀;
2、流量要求:动态平衡电动调节阀动态平衡阀胆的流量应根据对应风机盘管的额定流量来确定;
3、使用功能:
⑴、电动调节功能:与一般电动调节阀一致;
⑵、动态平衡功能:不管系统压力如何变化,始终维持流量不超过设计流量。
水水热交换器管路:
下图为在制冷机房水水热交换器上的应用:
1、安装位置:在水水热交换器一次热水回水管上安装动态压差平衡阀;
2、设定压差:根据”在流量为设计流量时两个取压点之间的设计压差”来确定;
3、使用功能:维持取压点之间的压差恒定。
冷水机组系统:
下图为一个典型的动态流量平衡阀应用实例:
1、安装位置:在三台水冷冷水机组的冷冻水、冷却水进水管分别安装动态流量平衡阀;
2、流量要求:每台动态流量平衡阀的流量根据对应水冷冷水机组冷冻水或冷却水的额定流量定制;
3、使用功能:维持流量恒定功能:不管系统压力如何变化,动态流量平衡阀管路的流量始终维持不变,且等于水冷冷水机组冷冻水(或冷却水)的额定流量,保证主机正常工作。
区域供热锅炉房及管网:
下图为区域供热系统应用实例:
1、安装位置:在锅炉供水管、热水分水器出水管及区域管网楼宇单体供水管处;
2、流量要求:每台动态流量平衡阀的流量根据对应管道的设计流量定制;
3、使用功能:恒流及限流功能:保证区域供热管网的流量分配,一方面保证足够的流量流入各楼宇单体,另一方面避免流入的流量过大而导致其它区域的流量不够。
选型参考
案例1:
如下图所示,为三台风冷冷水机组(图中MM表示)并联,在每台机组冷冻水进水管处安装动态流量平衡阀.已知冷冻水设计流量为85m3/h,进水管管径为DN200,要求启动压差不得大于25KPa,应如何选型?
选型步骤:
(1)根据冷水机组冷冻水设计流量85m3/h、启动压差不得大于25KPa的要求,查球墨铸铁动态流量平衡阀的主要性能参数表可得:
①、产品型号XXX:DN200、15-150KPa,88.97m3/h
②、产品型号XXX:DN250、15-150KPa,88.97m3/h
满足性能要求。
(2)根据在满足性能要求的前提下应尽量降低设备投资费用的原则,应选用小口径的动态流量平衡阀;
(3)所以,所选动态流量平衡阀的OS#为:产品型号XXX(查各厂商样本)
材质:球墨铸铁,尺寸:DN200,工作压差范围:15-150KPa,流量:88.97m3/h。
如下图所示,在二管制风机盘管水系统末端管道上选用动态平衡电动二通阀,风机盘管的设计流量是1.45m3/h,接管及末端管道管径均为DN20,要求提供电缆连接,如何选型?
案例2
如下图所示,在二管制风机盘管水系统末端管道上选用动态平衡电动二通阀,风机盘管的设计流量是1.45m3/h,接管及末端管道管径均为DN20,要求提供电缆连接,如何选型?
选型步骤:
⑴根据二管制、电缆连接,选择电动执行器XX,其技术参数为:
电压200-240VAC/50(60)Hz、功耗Max6W、三线SPDT输出、1米长连接电缆。
⑵根据设计流量及管径,选择动态平衡电动二通阀阀体为XX,其技术参数为:规格尺寸DN20BSPP、流量1.51m3/h,工作压差范围22-180KPa,关闭压差4Bar。
⑶综上所述,所选动态平衡电动二通阀的OS#为:产品型号:XXX
⑷上图为使用该阀的实际流量分布图,由图可知在阀门开启时流量近似等于1.51m3/h,满足设备要求。
案例3
下图为“动态流量平衡阀+电动调节阀”组合的一种典型应用形式:
1、应用场合:空调末端设备—如空调箱、空气处理机组、新风机组—等目标区域的温度控制;
2、方式:对末端设备流量分配的动态控制与限定;
3、功能:
⑴、电动调节功能:与一般电动调节阀一致;
⑵、流量的动态控制与限定功能:不管系统压力如何变化,能始终动态的控制末端设备的流量分配,并限定流量不会超过系统提供给该设备的设计流量;
⑶、最大流量设定在设计流量:能将组合阀的最大流量设定到末端空调设备所需的设计流量。
4、特点:
⑴、流量、温度控制精度较高;
⑵、无需调试和维护、安装工作简单;
⑶、整体造价较适中,性价比较好,适用于对空调温度控制精度要求较高的中、大型空调系统。
案例4
如下图所示,动态流量平衡阀和电动调节阀安装在供水管上。已知空调箱的设计流量为14m3/h,允许两阀各消耗的压损分别不超过25KPa、20KPa,连接管径为DN65,如何进行选型?
选型计算步骤如下:
⑴、根据空调箱设计流量计算电动调节阀在压差△P=0.2Bar时所需的Kv值:Kv=Q/(△P)0.5=14/(0.2)0.5=31.3
⑵、根据计算的Kv值选择电动调节阀规格:选择电动调节阀口径为DN50,其KVS=40≥31.3满足要求;
⑶、根据实际KvS值和空调箱计算流量值算出实际压差△Ps:△Ps=(Q/KVS)2=0.123Bar=12.3KPa
⑷、根据设计流量14m3/h,DP
下图为“动态流量平衡阀+电动蝶阀”组合的一种应用形式:
1、应用场合:冷水机组流量及台数切换控制;
2、方式:对流过冷水机组的流量进行恒定,并根据需要切换电动碟阀关断冷水机组水流;
3、功能:
⑴、定流量功能;
⑵、并联台数切换。
下图为“动态压差平衡阀+静态平衡阀”组合的一种应用形式:
1、应用场合:风机盘管系统的流量和压差控制;
2、方式:对同层风机盘管系统供回水压差进行设定,并预调流量
3、功能:
⑴、流量预设定
⑵、层之间和层内的动态平衡。
4、特点:
⑴、提高风机盘管系统的调节精度,一定程度上避免层与层之间和同层内的相互干扰。
⑵、安装、维护工作简单、调试稍复杂;
⑶、适用于对空调温度控制精度要求较高的中、大型空调系统。
转载自:暖通南社
电动调节阀型号大全
控制阀是自动化控制系统中的执行器,其应用质量反应在系统的调节品质上,工业自动控制水平的提高,控制阀已经渗透到生产的每一个角落,它在稳定生产,优化控制,维护及检修成本控制等方面都起着举足轻重的作用。
自动化行业中有句顺口溜:十阀九漏
对于调节阀的选型,在仪表的选型过程中是比较难的,尤其是工艺复杂、介质复杂的过程控制中,选型的问题更为突出。调节阀应用的好坏,与以下几个方面有关
正确的参数----设计阶段
正确的选型----设计招标阶段
正确的安装----工程施工
正确的使用和维护-现场服务
由此我们可以看出,我们讲调节阀的质量,不仅仅是生产厂的问题,它应该是一个广义的概念,包括设计人员、生产厂家、施工人员、使用维护人员。总结起来就是: 选好、装好、用好、维护好
以下列举常见的选型问题,选型过程中,如果能够对这些问题进行很好的处理,可以说你选阀就不会出现大的质量事故。
满足工艺条件的要求、满足自控系统的要求 满足经济性的要求。
十二步选好控制阀门
第一步精确掌握工艺参数及系统要求
选择好调节阀,使调节阀在一个高水平状态下运行将是一个很关键的问题,选择调节阀时,首先要收集完整的工艺流体的物理、化学特性参数与调节阀的工作条件。
主要有流体的成份、温度、密度、粘度、正常流量、最大流量、最小流量,最大流量与最小流量下的进出压力、最大切断压差等。
在对调节阀具体选型确定前,还必须充分掌握和确定调节阀体本身的结构、形式、材料等方面的特点。
技术方面主要考虑流量特性、压降、闪蒸、气蚀、噪音等问题。
设计阶段:设计结合时要准备的参数
工艺参数:温度、压力、正常流量时压差及切断时的压差。
流体特性:腐蚀性、粘度、温度变化对流体特性的影响。
系统要求:泄漏量、可调比、动作速度与频率、线性及噪音。
介质的化学性质,详细的成份。
流量系数Cv(流通能力)的定义为:调节阀前后的压差为1Kg/cm2,重度为1g/cm2流体,每小时通过阀门的体积流量(m3/h)。
调节阀流量系数Cv的计算方法很多,也比较繁琐。但是这个计算非常重要,如果自己不会算,那么就要提供详细的参数,让阀门厂专业选型人员计算。
这是调节阀门选择首先考虑的问题,要根据工艺参数确定阀门的尺寸,如果尺寸小了不能满足Qmax,大了常常在小开度工作,造成调节性能差,阀门寿命短。
总结起来就是,当改变阀芯、阀座尺寸后,依然不能满足要求,就必须改变阀门的尺寸。
根据生产能力、设备负荷、以被控介质的工况决定流通能力计算所需的数据,求得最大、最小流量时的Cvmax和Cvmin。通过多年的实践和理论探讨,在确定凋节阀口径时,按工况所需流量系数Cv值的1.2~1.4倍作为阀的流量系数值。调节阀开度大致范围如下:
最大开度:70%~90%
常用开度:40%~70%
最小开度:10%
根据计算得Cvmin和已采用的调节阀可调比验证可调范围,验证合适,既可用Cv值决定调节阀的口径。
原则上按照管道尺寸确定阀门的口径,但是采用和管道尺寸通径的阀门后,流量不能满足调节要求,则该缩径的缩径、该扩径的扩径。
阀口径的计算:如何确定调节阀口径?
确定计算流量Qmax、Qmin
确定计算压差,根据系统特点选定阻力比S值,然后确定计算(阀全开时)压差;
计算流量系数,选择合适的计算公式图表或软件求KV;
KV值选取,根据KV的max值在所选产品系列中最接近一档的KV,得到初选口径;
开度验算,要求Qmax时≯90%阀开度;Qmin时≮10%阀开度;
实际可调比验算,一般要求应≮10;R实际>R要求
口径确定,若不合格重选选KV值,再验证。
第四步流量特性的选择
调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调节阀的相对流量与它的开度之间关系。调节阀的流量特性有线性特性,等百分比特性及抛物线特性三种。
如何选择流量特性
流量特性选择的原则:
小开度工作、不平衡力变化大时选对数特性。
要求的被调参数反映速度快时选直线,慢时选对数。
压力调节系统可选直线特性。
液位调节系统可选直线特性。
关闭压差涉及到两个问题
造成阀门该关闭时候不能关闭,该打开时不能打开。
会影响阀门的Cv值选择准确度。
可调比R是阀门的一个重要的参数,选择的准确与否,直接影响调节品质。
调节阀所能控制的最大流量和最小流量之比称为可调比R.。当阀两端压差保持恒定时,最大流量与最小流量之比称为理想可调比。实际使用中阀两端压差是变化的,这时的可调比称为实际可调比。注意:R小了不能满足流量变化范围
第七步确定执行机构弹簧范围
要从启动工作压力、输出力、稳定性、可否调整等因素综合考虑,一般来讲,只要提供的起源压力准确,介质参数准确,就无大问题。
对公司来说流程非常复杂,控制介质也是五花八门,所以对材质的选择,学问也就最大,选型过程中,如果对工艺过程和工艺条件、介质物理化学性质掌握的透彻,所选择的阀门结构和材料也就越科学。
优秀的选型人员所选的阀门结构和材料应该实在满足使用功能的前提下,选择结构最简单、价格最低廉(相对而言),相反,有可能花了很多钱,阀门依然没有能选择好,这种费用可差20-30倍。对于生产来说,用不好的影响则更大,开开停停、造成经济损失和产品产量质量下降,甚至生产不能正常运行。
阀体耐压等级、使用温度和耐腐蚀性能等方面应不低于工艺连接管道的要求,并应优先选用制造厂定型产品。
水蒸汽或含水较多的湿气体和易燃易爆介质,不宜选用铸铁阀。
我公司地处北方,因此户外和环境温度低于-20℃的场合,不宜选用铸铁阀
对汽蚀、冲蚀较为严重的场合或者矿浆介质,对节流密封面应选用耐磨材料,如钴基合金或表面堆焊司特莱合金等
对强腐蚀性介质,选用耐蚀合金必须根据介质的种类、浓度、温度、压力的不同,选择合适的耐腐蚀材料。
阀体与节流件材料要分别对待,一般来讲阀体的腐蚀率与阀内件的腐蚀率之比应该优于1:8
对衬里材料的选择时该工作介质的温度、压力、浓度都必须满足该材料的使用范围,并考虑流体对衬里的磨损
真空阀不宜选用阀体内衬橡胶、塑料结构。
生活污水水处理系统尤其是工业污水处理系统以及含油的介质中的阀不推荐选用衬橡胶材料。
阀内件材质选择
高低温材料选择
典型介质的典型耐蚀合金材料选择
硫酸:316L,哈氏合金,20号合金。盐酸:哈氏B。醋酸、甲酸:316L、哈氏合金。磷酸:因可镍尔、哈氏合金。硝酸:铝,C4钢,C6钢。氢氟酸:蒙乃尔。烧碱:蒙乃尔。氯气(含水大于1%):哈氏C。盐水:钛、316L。硫酸镍:钛
非金属耐腐蚀材料
到目前为止,最万能的耐腐蚀材料是四氟乙烯,称为耐蚀王。因此,应首先选用全四氟耐腐蚀阀。但是以下情况不推荐选择:温度>160℃PN>1.6磨损严重的场合。
优秀的选型设计人员就知道现场的重要性,在设计结合阶段就会与工艺人员紧密结合,重视阀门材料的正确选型。
1)通常情况下,介质温度400℃时,需选用散热型阀盖和石墨填料。
4)为增加阀杆密封的可靠性,可选用双层填料结构。如果介质为剧毒或者易燃易爆、介质有可能与空气发生水解反应或者工艺要求外泄露率很低,建议选用波纹管密封方式。
在生产过程中,调节阀气开、气关形式的选择,主要是从工艺生产的安全来考虑。例:蒸气加热器、氯气浸出工艺氯气调节阀选用气开阀;锅炉进水的调节阀则选用气关式。
气动调节阀的气开、气关的选择不是一个单纯的自控专业的设计选型问题,这是个涉及到两个专业,即工艺、自控两个专业之间协调的问题,作用方式是由工艺人员提供。
对于一些特殊情况也可以考虑在气源中断时使调节阀保持原位。例如在加压釜内放料作业中,不希望使高压介质突然的切断或全部放空,在这种情况下调节阀应保持原位
这是相对于主题--阀门而言,是为了保证阀门的正常运行
阀门附件:1)阀门定位器——用于改善调节阀的工作特性,实现正确定位;行程开关——显示调节阀上、下限的行程工作位置;气动保位阀——气源故障时保持阀门当时位置;电磁阀——实现气路的自动切换。单气控用二位三,;双气控用二位五通;手动机构——系统故障时可切换手动操作;气动继动器——使气动薄膜执行机构动作加快。空气过滤减压器——气源净化、调压用。贮气罐——气源故障时,使阀能继续工作一段时间,一般需三段保护时配。
阀门附件的选择要实用,没有必要的就尽量不选用,但是关键的附件,还是要选用可靠的。
第十二步阀门结构形式的选择
阀门的分类
两位阀:主要用于关闭或接通介质; 调节阀:主要用于调节系统。选阀时,需要确定调节阀的流量特性; 分流阀:用于分配或混合介质; 切断阀:通常指泄漏率小于十万分之一的阀。
1按压力分类
真空阀:工作压力低于标准大气压;
低压阀:公称压力PN≤1.6MPa;
中压阀:PN2.5~6.4MPa;
高压阀:PNl0.0~80.OMPa,通常为PN22、PN32;
超高压阀:PN≥IOOMPa。
2按介质工作温度分类
高温阀:t>450℃;
中温阀:220℃≤t≤450℃;
常温阀:-40℃≤t≤220℃;
低温阀:-200℃≤t≤-40℃。
常用分类法(既按原理,作用又按结构划分)
直通双座调节阀,套筒阀
角型阀,三通阀,隔膜阀,蝶阀,球阀
选型提示
在满足过程控制要求的前提下,所选的阀应尽量简单、可靠、价廉、寿命长、维修方便和备件来源及时可靠。要尽力避免单纯追求好的结构、好的材质、多带附件,而忽略了对可靠性、经济性的考虑。
调节阀门优选次序
①全功能超轻型调节阀→②蝶阀→③套筒阀→④单座阀→⑤双座阀→⑥偏心旋转阀→⑦球阀→⑧角形阀→⑨三通阀→⑩隔膜阀。
设备选择阶段(招标阶段)
制定详细的设备计划
如果是成熟的工艺,或者有应用经验的控制阀门,应该根据原阀门运行情况、优点缺点,应用效果选择。
工程项目中要认真核对提供详细的过程参数。如果有疑问,必须结合其他专业对参数进行核对。
提交设备计划或者招标计划前,应该组织相关的技术人员对计划进行审核。
如果对阀门的材料、结构形式没有十足的把握,建议与设备厂家进行技术交流和设备考察。
预选厂家要选择服务质量好,产品质量过关的厂家。
切记:阀门的选择是一个复杂的过程,你所提供的技术参数直接会导致应用效果和控制品质。设备计划中所提出的参数一定要经过工艺技术人员的确认方可上报。
不要过分相信设计院,如果对设计院提供的参数有疑问,要通过正当的渠道进行参数确认。
招标过程中注意的问题
招标过程中,要认真核对设备厂商的投标书中提供的产品规格、参数、材料、配件是否能和招标书相应或者优于,如果有疑问必须澄清。
要将关键的参数和材料放在一起比对。真正做到货比三家。
不满足要求或者关键参数偏离招标书时,要坚持原则,不能用就是不能用,千万别强求。
其它需要考虑的问题
该选国内的还是国外的
从应用质量上说,国内调节阀的设计水平、生产水平与国外发达国家相比有一定的差距,这是实际的。如果说有十分大的差距,就不一定符合实际了(个人认为),哪么为什么国内的调节阀门的应用效果和使用寿命就远远不如国外的产品呢?
国内调节阀“先天不足”
比较一下国内和国外的阀门计算选型表
国内VSFISHER
国内的调节阀选型内容太简单,设计院的计算书也很简单,国内的也就20个序号,而国外的呢?有40-50个,我们都说美国的阀门好,美国仪表学会对阀门选型的标准格式有49个序号,受到这个影响,国内调节阀选型过程中很多内容都没有被纳入,过程参数不全面,造成了国内阀门“先天不足”
国内阀门过于标准化
国内的调节阀如川仪、西仪、南京自控、吴忠阀门,一直沿用国家联合设计图纸,过于标准,而不像国外“对症下*”,予以区别对待。
国内阀门泄露大
这个问题是自动控制中比较突出的问题,泄露量不仅设计阀门结构的选定,还设计到不平衡力的计算,哪么你选择阀门时候是不是有这样的感受,用户想用什么结构就用什么结构,想用什么材料就用什么材料,生产厂家只需对这标准一查,给个标准型号就搞定了,哪么谁来做细致的计算和考虑呢?没有。
既然没有细节就考虑不周到,就没有科学地选择,就会造成关不死、打不开、泄露大、密封性差、寿命短等问题。
粗糙的选型必然造成粗糙的使用效果,国内调节阀一般使用场合是可以的,对于特殊场合和复杂介质,稍有疏忽和欠考虑,阀门肯定不好用。
选型建议
对于复杂介质,易燃易爆介质、剧毒介质、高压介质选用国产阀门没有把握时,该选国外还是要选国外的。
对于普通介质,为了节约投资,还是推荐使用国内的阀门。
但是无论选国内还是国外,依然要提供准确的过程参数、仔细计算,准确选型。
1)基本误差:将20~100kPa信号平稳地增大或减小输入气室(或定位器)内,测量各点所对应的行程值,计算出“信号―行程"关系与理论值之间的各点误差,其最大值即为基本误差。试验点应按信号范围的0%、25%、50%、75%、100%5个点进行,测量仪表基本误差应限于被测试阀门基本误差限的25%
2)回差:实验方法同上。在同一输入信号上测得的正反行程的最大差值即回差。
安装的一般性要求
1)调节阀应垂直、正立安装在水平管道上,公称通经Dg≥50的调节阀,其阀前后管道上最好有永久性支架。
2)调节阀安装位置应方便操作维修,以便人员能进行维修和操作,必要时应设置平台。
3)调节阀上、下部分应留有足够空间,以便维修时取下执行机构和阀内件及阀的下法兰和堵头。
4)当调节阀安装在有振动场合时,应考虑防振措施。
5)未安装阀门定位器的调节阀,膜头上最好安装指示控制信号的小型压力表。
6)调节阀应先检查校验,并在管道吹扫后安装。
免责声明:本文源自互联网,仅供参考。版权归原作者所有,如侵权请联系我们删除。
《阀遍天下》
阀门人自己的圈子
阀门行业专业知识栈
电动调节阀型号表示
如有侵权,请联系删除
五一福利资料包
点分享
点收藏
点点赞
点在看
电动调节阀型号表示含义
关注送
来源:网络整理,如有侵权请联系删除
一、阀门的分类
阀门总的可分两大类:
依靠介质(液体、气体)本身的能力而自行动作的阀门。
如止回阀、安全阀、调节阀、疏水阀、减压阀等。
2、驱动阀门
借助手动、电动、液动、气动来操纵动作的阀门。
如闸阀,截止阀、节流阀、蝶阀、球阀、旋塞阀等。
按结构特征,根据关闭件相对于阀座移动的方向可分为:
(1)截门形:关闭件沿着阀座中心移动;
(2)闸门形:关闭件沿着垂直阀座中心移动;
(3)旋塞和球形:关闭件是柱塞或球,围绕本身的中心线旋转;
(4)旋启形:关闭件围绕阀座外的轴旋转;
(5)碟形:关闭件的圆盘,围绕阀座内的轴旋转;
(6)滑阀形:关闭件在垂直于通道的方向滑动。
按用途,根据阀门的不同用途可分为:
(1)开断用:用来接通或切断管路介质,如截止阀、闸阀、球阀、蝶阀等。
(2)止回用:用来防止介质倒流,如止回阀。
(3)调节用:用来调节介质的压力和流量,如调节阀、减压阀。
(4)分配用:用来改变介质流向、分配介质,如三通旋塞、分配阀、滑阀等。
(5)安全阀:在介质压力超过规定值时,用来排放多余的介质,保证管路系统及设备安全,如安全阀、事故阀。
(6)其它特殊用途:如疏水阀、放空阀、排污阀等。
按驱动方式,根据不同的驱动方式可分为:
(1)手动:借助手轮、手柄、杠杆或链轮等,有人力驱动,传动较大力矩时装有蜗轮、齿轮等减速装置。
(2)电动:借助电机或其他电气装置来驱动。
(3)液动:借助(水、油)来驱动。
(4)气动:借助压缩空气来驱动。
按压力,根据阀门的公称压力可分为:
(1)真空阀:绝对压力介质的温度分,根据阀门工作时的介质温度可分为:
(1)普通阀门:适用于介质温度-40℃~425℃的阀门。
(2)高温阀门:适用于介质温度425℃~600℃的阀门。
(3)耐热阀门:适用于介质温度600℃以上的阀门。
(4)低温阀门:适用于介质温度-150℃~-40℃的阀门。
(5)超低温阀门:适用于介质温度-150℃以下的阀门。
按公称通径分,根据阀门的公称通径可分为:
(1)小口径阀门:公称通径DN与管道连接方式分,根据阀门与管道连接方式可分为:
(1)法兰连接阀门:阀体带有法兰,与管道采用法兰连接的阀门。
(2)螺纹连接阀门:阀体带有内螺纹或外螺纹,与管道采用螺纹连接的阀门。
(3)焊接连接阀门:阀体带有焊口,与管道采用焊接连接的阀门。
(4)夹箍连接阀门:阀体上带有夹口,与管道采用夹箍连接的阀门。
(5)卡套连接阀门:采用卡套与管道连接的阀门。
二、阀门的特性
阀门的特性一般有两种,使用特性和结构特性。
它确定了阀门的主要使用性能和使用范围,属于阀门使用特性的有:
阀门的类别(闭路阀门、调节阀门、安全阀门等);
产品类型(闸阀、截止阀、蝶阀、球阀等);
阀门主要零件(阀体、阀盖、阀杆、阀瓣、密封面)的材料;
阀门传动方式等。
2、结构特性
它确定了阀门的安装、维修、保养等方法的一些结构特性,属于结构特性的有:
阀门的结构长度和总体高度、与管道的连接形式(法兰连接、螺纹连接、夹箍连接、外螺纹连接、焊接端连接等);
密封面的形式(镶圈、螺纹圈、堆焊、喷焊、阀体本体);
阀杆结构形式(旋转杆、升降杆)等。
三、选择阀门的步骤和依据
(1)明确阀门在设备或装置中的用途,确定阀门的工作条件:适用介质、工作压力、工作温度等等。
(2)确定与阀门连接管道的公称通径和连接方式:法兰、螺纹、焊接等。
(3)确定操作阀门的方式:手动、电动、电磁、气动或液动、电气联动或电液联动等。
(4)根据管线输送的介质、工作压力、工作温度确定所选阀门的壳体和内件的材料:灰铸铁、可锻铸铁、球墨铸铁、碳素钢、合金钢、不锈耐酸钢、铜合金等。
(5)选择阀门的种类:闭路阀门、调节阀门、安全阀门等。
(6)确定阀门的型式:闸阀、截止阀、球阀、蝶阀、节流阀、安全阀、减压阀、蒸汽疏水阀等。
(7)确定阀门的参数:对于自动阀门,根据不同需要先确定允许流阻、排放能力、背压等,再确定管道的公称通径和阀座孔的直径。
(8)确定所选用阀门的几何参数:结构长度、法兰连接形式及尺寸、开启和关闭后阀门高度方向的尺寸、连接的螺栓孔尺寸和数量、整个阀门外型尺寸等。
(9)利用现有的资料:阀门产品目录、阀门产品样本等选择适当的阀门产品。
2、选择阀门的依据
在了解掌握选择阀门步骤的同时,还应进一步了解选择阀门的依据。
(1)所选用阀门的用途、使用工况条件和操纵控制方式。
(2)工作介质的性质:工作压力、工作温度、腐蚀性能,是否含有固体颗粒,介质是否有毒,是否是易燃、易爆介质,介质的黏度等等。
(3)对阀门流体特性的要求:流阻、排放能力、流量特性、密封等级等等。
(4)安装尺寸和外形尺寸要求:公称通径、与管道的连接方式和连接尺寸、外形尺寸或重量限制等。
(5)对阀门产品的可靠性、使用寿命和电动装置的防爆性能等的附加要求。
在选定参数时应注意:
选择阀门应遵循的原则:
(1)截止和开放介质用的阀门
(2)控制流量用的阀门
(3)换向分流用的阀门
(4)带有悬浮颗粒的介质用阀门
四、阀门选型说明
2、截止阀选型说明
3、球阀选型说明
4、节流阀选型说明
5、旋塞阀选型说明
6、蝶阀选型说明
7、止回阀选型说明
止回阀一般适用于清净介质,不宜用于含有固体颗粒和粘度较大的介质。
当DN≤40mm时,宜采用升降止回阀(仅允许安装在水平管道上);
当DN=50~400mm时,宜采用旋启式升降止回阀(在水平和垂直管道上都可安装,如安装在垂直管道上,介质流向要由下而上);
当DN≥450mm时,宜采用缓冲型止回阀;
当DN=100~400mm也可选用对夹式止回阀;
阀门型号七部分
阀门型号由阀门类型、驱动方式,连接形式,结构形式,密封面或衬里材料、压力、阀体材料七部分组成。如图1所示。
如球阀 Q347F-16C其中每个编号含义
1、Q 类型球阀
2、3 驱动方式:涡轮
3、4 连接形式:法兰
4、7结构形式:固定球直通
5、F密封材料:氟塑料
6、16 公称压力:1.6MPa
7、C阀体材料:碳钢。
阀门典型类型代号用汉语拼音字母表示,按表1的规定。
当阀门又同时具有其他功能作用或带有其他结构时,在阀门类型代号前再加注一个汉语拼音字母,典型功能代号按表2的规定。
驱动方式代号用***数字表示,按表3的规定。
注:安全阀、减压阀无驱动方式代号,手轮和手柄直接连接阀杆操作形式的阀门,本代号省略。
对于具有常开或常闭结构的执行机构,在驱动方式代号后加注汉语拼音下标k或B表示,如常开型用6k、7k;常闭型用6B、7B。
气动执行机构带手动操作的,在驱动方式代号后加注汉语拼音下标表示,如6s。
防爆型的执行机构,在驱动方式代号后加注汉语拼音B表示,如6B.7B、9B。
对既是防爆型、还是常开或常闭型的执行机构,在驱动方式代号后加注汉语拼音B,再加注括号的下标K或B表示,如9B(B)、6B(k)。
以阀门进口端的连接形式确定代号,
代号用***数字表示,按下规定。
阀门结构形式用***数字表示,
依据阀门类型不同按下图的规定。
注:省略个别燃气工程中极少用到的阀门类型。
密封面或衬里材料代号
以两个密封面中起密封作用的密封面材料或衬里材料硬度值较低的材料或耐腐蚀性能较低的材料表示;金属密封面中镶嵌非金属材料的,则表示为非金属/金属。按表20规定的字母表示。
阀门密封副材料均为阀门的本体材料时,密封面材料代号用“W”表示。
压力级代号采用PN后的数字,无量纲。
当阀门工作介质温度超过425℃,采用最高工作温度和对应工作压力的形式标注时,表示顺序依次为字母P,下标标注工作温度(数值为最高工作温度的1/10),后标工作压力(MPa)的10倍,如P54100。
阀门采用压力等级的,在型号编制时,采用字母Class或CL(大写),后标注压力级数字,如Class150或CL150。
阀体材料代号一般按表21的规定。当阀体材料标注具体牌号时,可以写明牌号,如A105、CF8、316L.ZG20CrMoV等。
公称压力不大于PN16的灰铸铁阀门的阀体材料代号在型号编制时可以省略;公称压力不小于25的碳素钢阀门的阀体材料代号在型号编制时可以省略
永久VIP专享资料
扫码加入永久VIP
机电资料库+更新
协助下载+技术解疑
1. 机电天下招募永久会员!9T精品资料库+132次技术直播课程+后续无限更新!
2.知名企业图纸会审快速审查指南(2022年)word版可下载!
3. 名企住宅项目质量痛点防治手册(机电安装工程)
4. 机电安装工程质量培训讲义PPT版
5. 知名房企安装预埋预留工程施工技术及案例分析
6. 线管敷设、桥架安装等水电工程施工工艺
7. 建筑安装工程常见质量问题的预防和控制
8. 机电安装工程质量控制手册(含关键工序、工艺流程)
9. 可下载|机电安装监理质量控制要点PPT课件
10. 名企教程|如何提高项目机电工程质量管理
11. 中建设计优化指引手册(土建+机电)
12. 名企市政基础设施工程分部分项标准化构造实施指南(机电篇)
13.机电安装样板施工工序word版可下载!
14. 碧桂园水电精确定位讲义(设计施工篇)
15. 知名施工建设单位机电工程安装施工标准(电气篇)
16. 机电安装工程细部质量验收引用图集
17. 建筑电气施工质量通病及正确做法PPT课件
18. 给排水消防、通风空调、动力照明标准化交底PPT课件
19. 名企机电工程释义、特点、设计管理及施工管控讲义
20. 市政工程机电设备系统支架安装方法三维BIM技术手册
21. 经典精品|中建机电安装工程标准化图集
22. 机电工程质量创优总结课件(概念、专业范围、质量策划)
23. 知名房企建筑水电预埋安装工程施工工艺
24. 可下载|中建某*机电安装创优基础知识讲义
25. 知名集团机电安装工程施工工艺PPT版
26. 中字头机电安装工程施工标准化手册
27. 万达集团工管配管穿线管控要点
28. 住宅机电安装质量检查要点PPT版
29. 名企机电安装工程质量通病案例及防治手册
30. 住宅项目机电安装工程质量通病与防治讲义
31. 机电安装工程质量通病防治手册
32. 支(吊)架制作安装工艺标准PPT版!
33. 机电安装工程技术资料管理培训讲义
34. 住宅安装工程预留预埋施工技术交底
35. 中字头机电各专业提升要点讲义
36. 知名地产集团安装工程质量控制要点PPT版
37. 机电安装工程质量验收标准管理手册
38. 建筑设备房管理可视化标准
39. 中建某*工程标准化施工手册之安装工程部分
40. 建筑给排水部分施工工艺标准手册
41. 机电安装与装修工程技术管理指南PPT
42. 机电安装质量标准(非常详细)
43.非常完整的机电安装施工方案word版可编辑可修改!
44. 碧桂园机电安装施工工艺及常见质量通病分析
45. 经典总结|设备安装工程创优细部做法
46. 图文并茂的安装工程质量通病防治手册word版
47. 中建五*机电工程实体质量控制(水暖)PPT版
48.建筑安装精细化施工与常见问题的解析PPT可下载!
49.机电设备专业质量通病防治大全解PPT版可下载可编辑!
50. 消防工程最全知识培训PPT可下载!
51.支(吊)架制作安装工艺标准PPT版
52.中建工程实体质量精细化图集—机电部分
53.房地产机电安装强制性条文(全专业汇总)
54.中建施工现场临水临电标准化图册
55.中国金茂机电节点及工艺工法图集word版
56.碧桂园机电安装施工工艺及常见质量通病分析PPT
57.机电安装工程十一项技术介绍及应用范围PPT
58.给排水暖通及消防工程细部优秀做法图集
59.地产公司机电安装预留预埋管控PPT
60.名企精装修施工工艺标准手册
61.机电安装施工工艺讲解PPT版图文并茂
62.电气常用计算EXCEL表格汇总
63.中建机电安装工程标准化系列做法图集
64.机电安装管道支吊架管控要求完整PPT
65.名企机电标准化施工PPT讲义
机电天下
建筑机电技术人交流、学习乐园