旋喷桩机型号(旋喷桩机型号参数)
旋喷桩机型号参数
呵呵,每个厂家的型号都不要相同。我们有XPB-20BXP-50ASP-30BSP-30C等等,大小桩机都有,详细可咨询我。15222665285QQ:472562848
旋喷桩技术参数
1、单管旋喷注浆法使用的主要设备是高压注浆泵、旋喷钻机、注浆管(底部带喷咀)、输浆管等。高压注浆泵是关键的设备,通过它的高压才能使浆液切割土体,达到要求的喷射范围,形成一定直径的桩体。目前国内多采用天津市强能高压泵有限公司生产的专用旋喷高压注浆泵,型号为:GZB-40C。 2、旋喷钻机主要作用是把注浆管(底部带喷咀)送到设计深度,满足设计要求的提升和旋转注浆管。目前国内多采用天津聚强桩机生产的,型号有XPB—20、XP-50A、SP-30AB、XPL-50履带钻机等。 3、输浆管为内径Φ19的橡胶钢丝软管或内径Φ21的钢管,能够承受45MPa以上的压力。它的主要作用是连接高压泵与旋喷钻机,输送浆液。 4、注浆管一般使用Φ50钻杆,底部带有****的喷咀,喷咀直径为一般为2.0mm—3.0mm,实际多采用2.0mm—2.5mm。 5、双管注浆法,就是在单管的基础上,增加空气压缩机,用气包裹着高压力的水泥浆切割土体。天津聚强桩机公司的所有钻机,单双管能做,其中全液压步履的机型XPB-20,履带型XPL-50,单双三重管施工可以应用。
小型旋喷桩机
水泥搅拌桩机型号有:搅拌桩机(单管):LH805搅拌桩机,旋喷桩机(单管):DML-120D1旋喷桩机,搅拌轴转速为60转/min,电动机功率为45-55kw,最大扭矩为1200kgm-1500kgm,搅拌叶片外径为50-52cm,灰浆泵送浆压力为0.3-0.6Mpa。
水泥搅拌桩按主要使用的施工做法分为单轴、双轴和三轴搅拌桩。20世纪70年代,开始用水泥搅拌桩加固软土地基,至今已有40多年的历史。
作用原理:当水泥与饱和软土充分拌和后,水泥颗粒表面的矿物很快与饱和软土中的水发生水解和水化反应,生成氢氧化钙、含水硅酸钙、含水铝酸钙及含水铁酸钙等化合物。
扩展资料:
施工流程:
1、桩位放样→钻机就位→检验、调整钻机→正循环钻进至设计深度→打开高压注浆泵→反循环提钻并喷水泥浆→至工作基准面以下0.3m→重复搅拌下钻至设计深度→反循环提钻并喷水泥浆至地表→成桩结束→施工下一根桩。
2、桩位放样:根据桩位设计平面图进行测量放线,定出每一个桩位,误差要求小于钻机定位:依据放样点使钻机定位,钻头正对桩位中心。用经纬仪确定层向轨与搅拌轴垂直,调平底盘,保证桩机主轴倾斜度不大于1%。
3、启动钻机钻至设计深度,在钻进过程中同时启动喷浆泵,使水泥浆通过喷浆泵喷入被搅动的土中,使水泥和土进行充分拌合。在搅拌过程中,记录人应记读数表变化情况。
4、重复搅拌和提升:采用二喷四搅工艺,待重复搅拌提升到桩体顶部时,关闭喷浆泵,停止搅拌,桩体完成,桩机移至下一桩位重复上述过程细碎机。
参考资料:百度百科-水泥搅拌桩
mgj-50旋喷桩机
高压旋喷桩施工技术是70年代日本首先提出,它是在静压灌浆的基础上,引进水力采煤技术而发展起来的,是利用射流作用切割掺搅地层,改变原地层的结构和组成,同时灌入水泥浆或复合浆形成凝结体,借以达到加固地基和防渗的目的。随着中国地下空间开发高峰的到来,我国的高压旋喷技术也必将向着追求大深度,大直径,高可靠度方向发展.该文就当前常用的高压旋喷新技术中的单管法、二重管法和三重管法高压旋喷技术的工艺特点、适用范围、工艺原理、操作要点、设备选型、质量控制要点以及相关经济性进行简要介绍。
2、工艺特点
(1)施工机具设备简单,施工简便。
(2)具有较好的耐久性,且料源广阔,价格低廉。
(3)噪声小。
3、适用范围
(1)受土层、土的粒度、土的密度、硬化剂粘性、硬化剂硬化时间影响小,可广泛应用于淤泥、淤泥质土、粘性土、粉质粘土、(亚粘土)、粉土(亚砂土)、砂土、黄土及人工填土中的素填土甚至碎石土等多种土层。
(2)可作为既有建筑和新建建筑的地基加固之用,也可作为基础防渗之用;可作为施工中的临时措施(如深基坑侧壁挡土或挡水、防水帷幕等),也可作为永久建筑物的地基加固、防渗处理。
(3)当用于处理泥炭土或地下水具有侵蚀性、地下水流速过大和已涌水的地基工程时,宜通过试验确定其适用性。
4.1加固原理
高压喷射注浆法是利用钻机把带有喷嘴的注浆管钻进土层的预定位置后,以高压设备使浆液(可伴空气)或水成为20~40MPa的高压射流从喷嘴中喷射出来,冲切、扰动、破坏土体,同时钻杆以一定速度逐渐提升,将浆液与土粒强制搅拌混合,浆液凝固后,在土中形成一个圆柱状固结体(即旋喷桩),以达到加固地基或止水防渗的目的。
根据喷射方法的不同,喷射注浆可分为单管法、二重管法和三重管法。
①单管法:单层喷射管,仅喷射水泥浆。
②二重管法:又称浆液气体喷射法,是用二重注浆管同时将高压水泥浆和空气两种介质喷射流横向喷射出,冲击破坏土体。在高压浆液和它外圈环绕气流的共同作用下,破坏土体的能量显著增大,最后在土中形成较大的固结体。
③三重管法:是一种浆液、水、气喷射法,使用分别输送水、气、浆液三种介质的三重注浆管,在以高压泵等高压发生装置产生高压水流的周围环绕一股圆筒状气流,进行高压水流和气流同轴喷射冲切土体,形成较大的空隙,再由泥浆泵将水泥浆以较低压力注入到被切割、破碎的地基中,喷嘴作旋转和提升运动,使水泥浆与土混合,在土中凝固,形成较大的固结体,其加固直径可达2m。
喷射注浆法的加固半径和许多因素有关,其中包括喷射压力P、提升速度S、被加固土的抗剪强度τ、喷嘴直径d和浆液稠度B。加固范围与喷射压力P、喷嘴直径d成正比,与提升速度S、土的抗剪强度τ和浆液稠度B成反比。加固体强度与单位加固体中的水泥掺入量和土质有关。
4.2成桩机理
高压喷射注浆的成桩机理包括以下五种作用:
(1)高压喷射流切割破坏土体作用。喷射流动压以脉冲形式冲击破坏土体,使土体出现空穴,土体裂隙扩张。
(2)混合搅拌作用。钻杆在旋转提升过程中,在射流后部形成空隙,在喷射压力下,迫使土粒向着与喷嘴移动方向相反的方向(即阻力小的方向)移动位置,与浆液搅拌混合形成新的结构。
(3)升扬置换作用(三重管法)。高速水射流切割土体的同时,由于通入压缩气体而把一部分切下的土粒排出地上,土粒排出后所留空隙由水泥浆液补充。
(4)充填、渗透固结作用。高压水泥浆迅速充填冲开的沟槽和土粒的空隙,析水固结,还可渗入砂层一定厚度而形成固结体。
(5)压密作用。高压喷射流在切割破碎土层过程中,在破碎部位边缘还有剩余压力,并对土层可产生一定压密作用,使旋喷桩体边缘部分的抗压强度高于中心部分。旋喷桩固结体情况图4所示。
高压旋喷桩施工工艺流程图见图5。
图5 高压旋喷桩工艺流程图
6、操作要点
6.1施工前准备工作
(1)在设计文件提供的各种技术资料的基础上作补充工程地质勘探,进一步了解各施工工点地基土的性质、埋藏条件。
(2)准备充足的水泥加固料和水。水泥的品种、规格、出厂时间经试验室检验符合国家规范及设计要求,并有质量合格证。严禁使用过期、受潮、结板、变质的加固料。一般水泥为425号普通硅酸盐水泥。水要干净,酸碱度适中,pH值在5~10之间。
(3)根据补充勘探资料,在选择的试验工点加固范围内的各代表性地层用薄壁取土器采取必需数量的原状土送试验室,对取得的土样在进行试验之前应妥善保存,使土样的物理和化学性能尽可能保持不变。
(4)室内配合比试验。根据设计要求的喷浆量或现场土样的情况,按不同含水量设计并调整几种配合比,通过在室内将现场采取的土样进行风(烘)干、碾碎,过2~5mm筛的粉状土样,按设计喷浆量、水灰比搅拌、养护、力学试验,确定施工喷浆量、水灰比。一般水灰比可取1.0~1.5。为改善水泥土的性能、防沉淀性能和提高强度,可适当掺入木质素磺硫钙、石膏、三乙醇胺、氯化钠、氯化钙、硫酸钠、陶土、碱等外掺剂。若试验之前土样的含水量发生了变化,应调整为天然含水量。
(5)试桩试验。根据室内试验确定的施工喷浆量、水灰比制备水泥浆液在试验工点打设数根试桩,并根据试桩结果,调整加固料的喷浆量,确定搅拌桩搅拌机提升速度、搅拌轴回转速度、喷入压力、停浆面等施工工艺参数。
(6)推土机、挖掘机配合自卸汽车清除地表0.3m厚的种植土,杂物,并将原地面按设计要求整平,填出路拱。根据施工现场实际情况,施作临时排、截水设施,并在施工范围以外开挖废泥浆池以及施工孔位至泥浆池间的排浆沟。
(7)按设计要求完成施工放样,用木桩定出桩位,用白石灰作出明显标识。
(1)钻机定位。移动旋喷桩机到指定桩位,将钻头对准孔位中心,同时整平钻机,放置平稳、水平,钻杆的垂直度偏差不大于1%~1.5%。就位后,首先进行低压(0.5MPa)射水试验,用以检查喷嘴是否畅通,压力是否正常。
(2)制备水泥浆。桩机移位时,即开始按设计确定的配合比拌制水泥浆。首先将水加入桶中,再将水泥和外掺剂倒入,开动搅拌机搅拌10~20分钟,而后拧开搅拌桶底部阀门,放入第一道筛网(孔径为0.8mm),过滤后流入浆液池,然后通过泥浆泵抽进第二道过滤网(孔径为0.8mm),第二次过滤后流入浆液桶中,待压浆时备用。
(3)钻孔(三重管法)。当采用地质钻机钻孔时,钻头在预定桩位钻孔至设计标高(预钻孔孔径为15cm)。
(4)插管(单重管法、二重管法)。当采用旋喷注浆管进行钻孔作业时,钻孔和插管二道工序可合而为一。当第一阶段贯入土中时,可借助喷射管本身的喷射或振动贯入。其过程为:启动钻机,同时开启高压泥浆泵低压输送水泥浆液,使钻杆沿导向架振动、射流成孔下沉;直到桩底设计标高,观察工作电流不应大于额定值。三重管法钻机钻孔后,拔出钻杆,再插入旋喷管。在插管过程中,为防止泥砂堵塞喷嘴,可用较小压力(0.5~1.0MPa)边下管边射水。
(5)提升喷浆管、搅拌。喷浆管下沉到达设计深度后,停止钻进,旋转不停,高压泥浆泵压力增到施工设计值(20~40MPa),坐底喷浆30s后,边喷浆,边旋转,同时严格按照设计和试桩确定的提升速度提升钻杆。若为二重管法或三重管法施工,在达到设计深度后,接通高压水管、空压管,开动高压清水泵、泥浆泵、空压机和钻机进行旋转,并用仪表控制压力、流量和风量,分别达到预定数值时开始提升,继续旋喷和提升,直至达到预期的加固高度后停止。
(6)桩头部分处理。当旋喷管提升接近桩顶时,应从桩顶以下1.0m开始,慢速提升旋喷,旋喷数秒,再向上慢速提升0.5m,直至桩顶停浆面。
(7)若遇砾石地层,为保证桩径,可重复喷浆、搅拌:按上述4~6步骤重复喷浆、搅拌,直至喷浆管提升至停浆面,关闭高压泥浆泵(清水泵、空压机),停止水泥浆(水、风)的输送,将旋喷浆管旋转提升出地面,关闭钻机。
(8)清洗。向浆液罐中注入适量清水,开启高压泵,清洗全部管路中残存的水泥浆,直至基本干净。并将粘附在喷浆管头上的土清洗干净。
(9)移位。移动桩机进行下一根桩的施工。
(10)补浆。喷射注浆作业完成后,由于浆液的析水作用,一般均有不同程度的收缩,使固结体顶部出现凹穴,要及时用水灰比为1.0的水泥浆补灌。
6.3推荐的主要施工技术参数
旋喷施工中,水泥浆的用量和提速、灌浆压力、喷嘴大小都有关系的,所以在施工前得先做试验桩,确定合理施工参数和桩径。可按表1.4中的数值初步选定施工技术参数。
表1高压旋喷桩施工技术参数一览表
介质
施工技术参数
单管法
双管法
三管法
水液
压力/MPa
25~40
流量/(L/min)
80~120
喷嘴孔径/mm
2.0~3.2
喷嘴数量/个
1~2
浆液
压力/MPa
25~35
25~35
1~5
流量/(L/min)
65~120
80~120
85~150
比重
1.4~1.6
1.4~1.6
1.5~1.8
喷嘴孔径/mm
2.0~2.5
2.0~3.0
10~14
喷嘴数量/个
2
1~2
1~2
空气
压力/MPa
0.5~0.8
0.5~1.0
风量/(m3/min)
1~2
0.9~3.0
喷嘴环状间隙/mm
1~2
1~2
喷嘴数量/个
1~2
1~2
注浆管
提升速度/(cm/min)
15~20
10~20
5~20
旋转速度/(r/min)
15~20
10~20
10~20
外径/mm
42~50
42~50
50~108
7、主要机具及设备选配
机具及设备名称
性能要求
高压喷射注浆施工工艺
单管
双管
三管
高压注浆泵
压力:20~60MPa;流量:60~150L/min
√
√
√
注浆泵
压力:1~9MPa;流量:40~160L/min
-
-
√
造孔钻机
造孔深度:30~100m
√
√
√
空压机
流量:1.0~10.0m3/min;压力:0.7~20.MPa
-
√
√
浆液搅拌机
容量:1~3m3
√
√
√
普通钻杆
Φ42~Φ50mm
√
-
-
特殊钻杆
Φ40~Φ75mm;Φ75~Φ90mm
-
√
√
高压喷射平台(钻机)
旋转或0°~90°摆动,造孔深度:30~100m
√
√
√
高压胶管
Φ19~Φ22mm;压力:20~70MPa
√
√
√
排污泵
压力:2~3MPa;流量:20~80L/min
√
√
√
注:√为适用于高压旋喷桩施工工艺的机具和设备。
8、质量要求及质量控制要点
8.1旋喷桩施工质量要求
旋喷桩施工质量要求应满足表4要求。
表4 旋喷桩施工质量标准表
序号
项目
允许偏差
检查数量
检查方法及说明
1
固结体位置(纵横方向)
50mm
抽检2%,但不少于2根
用经纬仪检查(或钢尺丈量)
2
固结体垂直度
1.5%
用经纬仪检查喷浆管
3
固结体有效直径
±50mm
开挖0.5~1m深后尺量
4
桩体无侧限抗压强度
不小于设计规定
钻芯取样,做无侧限抗压强度试验
5
复合地基承载力
不小于设计规定
抽检2‰,但不少于1处
平板荷载试验
6
渗透系数
不小于设计规定
按设计要求数量
加固体内或围井钻孔注(压)水试验
注:钻芯取样做桩体无侧限抗压强度试验、复合地基平板荷载试验和渗透系数试验应在成桩28天后进行,若设计有其他要求,按设计要求的时间进行检查。
(1)正式开工前应认真作好试桩工作,确定合理的施工技术参数和浆液配比。
(2)旋喷过程中,冒浆量小于注浆量的20%为正常现象,若超过20%或完全不冒浆时,应查明原因,调整旋喷参数或改变喷嘴直径。
(3)钻杆旋转和提升必须连续不中断,拆卸接长钻杆或继续旋喷时要保持钻杆有10~20cm的搭接长度,避免出现断桩。
(4)在旋喷过程中,如因机械出现故障中断旋喷,应重新钻至桩底设计标高后,重新旋喷。
(5)制作浆液时,水灰比要按设计严格控制,不得随意改变。在旋喷过程中,应防止泥浆沉淀,浓度降低。不得使用受潮或过期的水泥。浆液搅拌完毕后送至吸浆桶时,应有筛网进行过滤,过滤筛孔要小于喷嘴直径1/2为宜。
(6)在旋喷过程中,若遇到孤石或大漂石,桩可适当移动位置(根据受力情况,必要时可加桩),避免畸形桩或断桩。
(7)旋喷过程中,应按表5的要求作好施工记录。
表5旋喷注浆记录表
工程名称
钻孔机具
高压泵型号
空压机型号
水泵型号
注浆管直径
喷嘴孔径
喷嘴个数
设计提升速度
设计旋转速度
设计注浆量
浆液配比
水泥标号
注浆孔编号
旋喷深度(m)
实际有效长(m)
旋喷时间
(时分)
开始
结束
旋转速度(r/s)
提升速度(m/s)
旋喷压力(MPa)
注浆量(m3)
冒浆量及残液状态
供水压力(MPa)
供风压力(MPa)
旋喷日期
现场负责人:
记录人:
(1)不冒浆或冒浆量少。
通常原因是加固土层粒径过大,孔隙较多,可采取以下措施:
1)加大浆液浓度,可以从1.1加大到1.3左右继续喷射。
2)灌注粘土浆或加细砂、中砂,待孔隙填满后再继续正常喷射。
3)在浆液中掺加骨料。
4)加泥球封闭后继续正常喷射。
5)灌注水泥砂浆后,再将孔内水泥浆置换成粘土浆,待孔隙填满后继续正常喷射。
(2)冒浆量过大。
通常是有效喷射范围与喷浆量不适应有关,可采取以下措施:
1)提高喷射压力。
2)适当缩小喷嘴直径。
3)适当加快提升速度。由于冒浆量中含有地层颗粒和浆液的混合体,目前对冒浆中的水泥的分离回收尚无适宜方法,在施工中多采用过滤、沉淀、回收调整浓度后再利用。
(3)凹穴处理。
1)在喷射灌浆完毕时,即连续或间断地向喷射孔内静压灌注浆液,直至孔内混合液凝固不在下沉。
2)在喷射灌浆完成后,向凝固体与其上部结构之间的空隙进行第二次静压灌浆,浆液的配比应为不收缩且具有膨胀性的材料,如采用水泥∶水∶铝粉的配比为9.8∶6.9∶0.3的浆液。
9、经济对比
表6同工况经济对比一览表
工艺名称
施工费(元/m)
水泥用量(kg/m)
材料费(元/m)
单价(元/m)
单管法
30
65
39
69
双管法
60
270
162
222
三管法
90
450
270
360
注:为直观的对比单价,表中水泥按600元/吨计算,成孔直径均为800mm计算
基坑围护施工技术
打造知识分享平台
长按扫描咨询各类问题
点下“在看”给小编加鸡腿,不要忘了点赞哟
旋喷桩机多少钱一台
点击题目下方蓝字关注 环保人
(ACF)活性炭纤维吸附回收装置
1
为什么要进行VOCs废气综合治理
挥发性有机废气(volatileorganiccompounds,VOCs)是空气中普遍存在且组成复杂的一类有机污染物,在我国,VOCs挥发性有机物,是指常温下饱和蒸汽压大于70Pa、常压下沸点在260℃以下的有机化合物。其主要成分为烃类、硫化物、氨等。其污染主要表现在两个方面,一方面是多数VOCs本身具有毒理特性,危害人体健康,有机废气是有害人体健康的污染物质,它与大气中的NO2反应生成O3,可形成光化学烟雾,并伴随着异味、恶臭散发到空气中,对人的眼、鼻和呼吸道有刺激作用,对心、肺、肝等内脏及神经系统产生有害影响,有些则是影响人体某些器官和机体的变态反应源,甚至造成急性和慢性中毒,可致癌、致突变;另一方面是一些VOCs物种具有较强的光化学反应活性,能在环境中进行二次转化。其光化学反应主导着光化学烟雾的进程,对城市和区域臭氧的生成至关重要,也是导致灰霾天气的重要前体物之一,同时可导致农作物减产。因此,VOCs处理越来越受到各国的重视,许多发达国家都颁布了相应的法令以限制VOCs的排放,已成为大气污染控制中的一个热点。
据不完全统计,全国各行业产生有机废气的企业80%的没有废气处理设备,废气直接排放;10%的企业拥有热力焚烧炉,其余10%的企业拥有其它形式的废气处理设备。在拥有废气处理设备的企业中,又有半数以上因为运行费用过高而不经常使用。我国环境保护部颁布的首部大气污染防治综合性规划-《重点区域大气污染防治“十二五”规划》明确指出,挥发性有机物(VOCs)为下一阶段大气污染控制的重点污染物之一。可见,VOCs污染问题已经引起了我国的高度关注。
2
(ACF)活性炭纤维吸附回收装置简介
天洁产品研发体系,凭借天洁人专业的设计研发能力、国际标准的制造工艺、ISO的质控管理体系,已经发展到新的高度,可根据每个用户的具体需求或项目的特色,进行个性化研发设计,为其量身定制大气净化产品,节约成本,实现节能省耗,减少污染,绿色环保的可持续发展。
产品概述
(ACF)活性炭纤维吸附回收装置,是一种固定环式吸附床装置,以新型吸附材料活性炭纤维(Activatedcarbonfiber,ACF)为吸附材料,通过先进高效、安全可靠的工艺,机电一体化全自动控制技术处理各行业在生产过程中排出的有机废气。该技术具有吸附效率高、运行能耗低的优点,可充分回收工业废气中的有机溶剂,实现了保护环境和企业经济利益最大化的目标。
吸附技术原理
当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程就是吸附,具有吸附作用的物质被称为吸附剂,一般为密度相对较大的多孔固体。被吸附的物质称为吸附质,一般为密度相对较小的气体或液体。废气中的有机成分被吸附到活性炭纤维的微孔中,从而在炭纤维微孔内形成一层平衡的吸附浓度,由于分子之间拥有相互吸引的作用力,当一个分子被活性炭内孔捕捉后,会导致更多的分子不断被吸引,直到添满活性炭纤维孔隙为止。必须指出的是,不是所有的微孔都有吸附作用,这些被吸附的有机物分子的直径必须是要小于毛细孔的孔径,即只有当孔隙结构略大于有机物分子的直径,能够让有机物分子完全进入的情况下才能保证被吸附到微孔中,过大或过小都不行,这需要通过不断地改变原材料和活化条件来创造具有不同的孔径结构的吸附剂,从而适用于各种有机物的吸附。在吸附饱和后,采用蒸汽脱附法,将吸附在活性炭纤维孔径内的有机分子脱附出来并回收。
吸附回收工艺
活性炭纤维吸附回收装置使用优质不锈钢为箱体,吸附箱内安置有一定数目的缠绕活性炭纤维毡的环式固定床。工艺可分为一级吸附工艺、二级或多级吸附工艺,吸附箱体之间通过管路和阀门或并或串连接,交替切换工艺步骤。
1).预处理—吸附:去除酸碱腐蚀物质、固体颗粒物或液滴等夹带物,降低废气温度后经风机加压进入吸附器,有机组分在穿透活性炭纤维床层时被吸附,吸附净化后的气体从顶部排放。
2).脱附—再生:吸附回收工艺采用水蒸气将有机物脱附,将活性炭纤维再生。脱附蒸汽由吸附器顶部进入,加热活性碳纤维床层,脱附有机物。脱附后的活性碳纤维湿度和温度都很高,需要向吸附器内吹扫空气,使碳纤维吸附床层迅速降温降湿,随后进入下一个循环。
3).冷凝回收:脱附产生的混合蒸汽经冷凝器冷凝回收液态混合液,混合液可通过重力分层、蒸馏、精馏等手段回收有机物。
吸附材料:活性炭纤维(ACF)
活性碳纤维是经过活化的含碳纤维,将某种含碳纤维(如酚醛基纤维、PAN基纤维、黏胶基纤维、沥青基纤维等)经过高温活化(不同的活化方法活化温度不一样),使其表面产生纳米级的孔径,增加比表面积,从而改变其物化特性。活性炭内部孔隙结构发达,比表面积大、具有强吸附能力的一类含碳材料,常被用于除味除臭,是一种常见的吸附剂。
活性碳分为粒状活性碳、粉末活性碳及活性碳纤维,但是由于粉末活性碳有二次污染且不能再生而被限制利用。活性碳纤维(ACF)是继粉状与粒状活性碳(Granularactivatedcarbon,GAC)之后的第三代活性碳产品。传统的活性炭是一种经过活化处理的多孔炭,为粉末状或颗粒状,而活性碳纤维则为纤维状,纤维上布满微孔,其对有机气体吸附能力比颗粒活性炭在空气中高几倍至几十倍,在水溶液中高5~6倍,吸附速率快100~1000倍!没有确切数值,这与活性碳纤维的种类、制作工艺等有关。它是继活性炭之后新一代的吸附材料,它是由纤维为原料制成,具有比表面积大、孔径适中、分布均匀、吸附速度快、杂质少等优点;被广泛运用于水净化、空气净化、航空、军事、核工业、食品等行业;
活性炭纤维毡用于有机溶剂的回收,对于从气相分离回收有机溶剂,如对苯类、酮类、酯类、石油类的废气均能从气相吸附回收。用活性炭纤维作溶剂回收材料吸附脱附速度快、处理量大,回收溶剂质量高,回收率可达90%以上。活性炭纤维被认为是21世纪最优秀的环保材料之一,在气体和液体净化、有害气体及液体吸附处理、溶剂回收、功能电极材料等方面已得到成功应用。
装置特点与优势
1).设备主体使用优质不锈钢加工制作,适合应用于各种场合,使用寿命长;
2).系统化防爆设计和安全节点监控,严格的产品质量保证体系,确保设备本质安全;
3).PLC控制,集成电磁阀、气动元件执行动作,可靠性强,操作方便,自动化程度高;
4).为保证客户生产工艺过程和吸附装置安全运行,配备有事故紧急排放通道和动力电源、压缩空气突发故障情况下的安全设计,便于维护。
5).物理吸附机理,分离温度低,设计有运行参数优化程序,大幅降低蒸汽和用电耗量,为客户节省运行费用。
6).装置在处理大风量的废气时使用挡板阀,挡板阀有气缸控制阀板开启关闭动作,成本低于气动蝶阀;
7).在废气进入吸附装置之前设置了三通旁通阀,在装置故障、维修时不影响车间正常生产;
8).需要风机加压的吸附装置,将主风机位置设置到了三通旁通阀的前面,在装置故障、维修时风机仍然正常工作,主动排气,改善车间的生产环境,不影响车间正常生产;
9).环式结构的固定床,将毡状碳纤维缠绕在上面,提高了通风面积、降低了阻力,提高了废气处理能力,也间接的降低了运行费用,使设备结构紧凑,占地面积小;
10).设备选型灵活,工艺配置多变,为了有效地进行吸附回收,尤其是对吸附难度较大的气体,采用了“循环风”系统对废气进行多次循环吸附,以尽可能地提高吸附效率。
11).采用了PLC控制,运行程序严谨,严格按照吸附—脱附再生—干燥降温连续运行,在切换频繁的情况下整个系统协调运行,设备全自动化运行。
12).适用行业及适用可回收有机物
适用行业及适用可回收有机物
适应行业:活性炭纤维吸附回收装置适用于石油化工、医*化工、农*化工、涂布行业、涂装行业、包装印刷行业、制革行业、超细纤维(人造革)、超高分子量聚乙烯纤维(PE纤维)等行业废气的净化,吸附回收废气中的有机物质,重复利用,降低消耗,减少污染。
应用工程:聚氯乙烯/苯乙烯合成废气吸附回收氯乙烯/苯乙烯;丙烯酸废气吸附回收甲苯;蒽醌法双氧水废气吸附回收重芳烃;空气氧化法苯甲酸废气吸附回收甲苯;TBBPA生产废气吸附回收氯苯;水松纸印刷废气吸附回收乙醇;包装印刷废气吸附回收甲苯、乙酸乙酯、丙酮、异丙醇;干复机废气吸附回收乙酸乙酯;超细纤维(人造革)废气吸附回收甲苯;特种纤维(PE纤维)废气吸附回收碳氢清洗剂;制革废气吸附回收丙酮、乙酮;罐车装车吸附回收罐车油气中的有机物;油品储备罐区吸附回收储罐呼吸废气中有机物。
可回收的有机物:乙醇、异丙醇、丁醇、苯、甲苯、二甲苯、氯苯、丙酮、丁酮、甲基异丁酮、环己酮、乙酸乙酯、乙酸丁酯、三氯乙烷、二氯甲烷、三氯甲烷、四氯化碳、三氯乙烯、全氯乙烯、石油醚、石脑油、重芳烃、碳氢清洗剂、二氧杂环己烷、二甲基溶纤剂、丙烯酸/酯、苯乙烯、醋酸乙烯、正己烷等。
3
VOCs废气治理技术的选择
VOCs种类繁多,来源也十分广泛,成分复杂,常见的有烃类、醇类、醚类、酯类等。加油站、装修、餐饮、干洗、喷涂、化工等生产或使用有机溶剂的行业都会产生VOsC排放。即使同一物质,由于风量不同、浓度不同,所需技术路线也不一样。这也决定了没有一种技术可以解决所有的VOCs问题。
VOCs处理方法有数十种,其原理主要有回收有价值溶剂的回收技术和分解VOCs分子的破坏技术两大类,实际应用中更多是采用组合式技术。比如:采用浓缩和燃烧结合的技术治理低浓度大风量废气,减少装置投资;采用催化燃烧(CO)或蓄热式燃烧(RTO)技术实现低能耗下VOCs的彻底处理;根据VOCs自身溶解度、沸点等特性选择变温吸附或变压吸附进行溶剂的回收,具体如何选择取决于客户生产线的工况。
4
VOCs废气治理设备的选型条件
为了给特定的应用选择最合适型号的有机废气处理系统,必须知道以下的资料:
● 有机废气的排放流量
如果待处理有机废气的流量是在5,000Nm3/h以下,蓄热式系统(RTO)大体来说是不适用的。这是因为与热回收式焚烧系统来比较,蓄热式氧化器(RTO)的高成本大体上是不足以抵消它在节省燃料和电力消耗所带来好处。流量大于50,000Nm3/h时,热回收热力焚烧系统有严重的经济缺点,这是因为他们会产生非常高的燃料费用。然而,如果工艺需要大量的热能时,二级的热回收锅炉可以用来抵消高昂的燃料费用,另一个例外是每年很少运作,需处理大流量废气的应急系统。
● 有机废气的排气温度
如果待处理有机废气的温度在大约300℃以上时,是不适合采用蓄热式系统(RTO)的,这是因为高温的待处理有机废气会大大降低换向阀的可靠性和寿命;另外,在这样高的温度时,建造RTO的高成本也不足以抵消在节省燃料和电力消耗所带来好处。如果待处理有机废气的温度超过500℃,采用热回收式焚烧系统不如采用直燃式焚烧系统,因为在燃料消耗的差距太小,不足以抵消增加的热回收器带来的投资成本。
● 污染物质浓度水平
待处理有机废气的有机物浓度是影响选择废气处理系统选择的主要因素。
直燃式氧化器能够处理最大浓度范围的碳氢化合物,从十亿分之一的浓度水平到纯碳氢化合物蒸气。如果有机废气浓度超过25%,特别考虑要执行措施来防止从氧化器到废气来源的回火。这种能处理大浓度范围的弹性能力的代价是这种型式氧化器的高燃料成本。
蓄热式和热回收式的氧化器都限制被处理有机废气的浓度必须少于25%:对于蓄热式系统,此限制是由于存在热失控的危险。对于热回收式系统,是怕热回收器被损坏。解决方法可以是往有机废气中掺入空气以降低浓度或做更多的热回收。
● 污染物质的类型
当有机废气中含有高浓度的可转化有机酸的物质(如氯,氟,硫和卤素)时必须特别小心。他们会对设备造成严重的腐蚀或令催化剂中毒。
● 微粒散发的水平
当有机废气中含有微小颗粒时也必须特别小心。例如,当废气中含有油雾颗粒时,它们会聚集在管道和氧化器较冷的部位,那这个设备就需要经常清理。
-------------------------
旋喷桩施工工艺及流程,看产污环节
一、施工机具
施工机具主要由钻机和高压发生设备两大部分组成。由于喷射种类不同,所使用的机器设备和数量均不同,如下表:
设备名称 型号 功率 数量 单位
旋喷钻杆 XY-4 10kW 1 台
高压柱塞泵 3D2-S2-85/45 75kW 1 台
空压机 6m3 37kW 1 台
浆液搅拌机 立式 4kW 1 台
灌浆泵 SGB6-10 22kW 1 台
排污泵 立式 7.5kW 1 台
配套设备若干
二、施工工艺
1.场地三通一平
施工前应保证场地的三通一平,确保用电安全。
2.桩位测设
桩位应严格按照图纸设计测设,偏差不得大于50mm.
3.试桩及确定工艺参数
为保证施工质量应严格遵守试桩要求,在展开大批量制桩前进行试桩,以校验施工工艺参数是否合理,现根据工程经验提出试桩用工艺参数如下:
⑴注浆管:提升速度12~18cm;旋转速度10~20r/min.
⑵水:压力20~25Mpa;流量85L/min.
⑶浆液压力:≥20Mpa;流量>60Lmin.
⑷空气:压力0.5~0.9Mpa;流量0.7m3/min.
⑸水灰比:1:1
4.钻机就位
钻机安放在设计的孔位上并应保持垂直,施工时旋喷管的允许倾斜度不得大于1.5%.
5.钻孔
单管旋喷常使用76型旋转振动钻机,钻进深度可达30m以上,适用于标准贯入度小于40的砂土和粘性土层,当遇到比较坚硬的地层时宜用地质钻机钻孔。钻孔的位置与设计位置的偏差不得大于50mm.
6.插管
插管是将喷管插入地层预定的深度。使用76型振动钻机钻孔时,插管与钻孔两道工序合二为一,即钻孔完成时插管作业同时完成。如使用地质钻机钻孔完毕,必须拔出岩芯管并换上旋喷管插入到预定深度。在插管过程中,为防止泥砂堵塞喷嘴,可边射水、边插管,水压力一般不超过1MPa,若压力过高,则易将孔壁射塌。
7.喷射作业
当喷管插入预定深度后,由上而下进行喷射作业,技术人员必须时刻注意检查浆液初凝时间、注浆流量、风量、压力、旋转提升速度等参数是否符合设计要求,并随时做好记录,绘制作业过程曲线。
当浆液初凝时间超过20h应及时停止使用该水泥浆液(正常水灰比1:1,初凝时间为15h左右)
8.冲洗
喷射施工完毕后,应把注浆管等机具设备冲洗干净,管内机内不得残存水泥浆。通常把浆液换成水,在地面上喷射,以便把泥浆泵、注浆管和软管内的浆液全部排除。
9.移动机具将钻机等机具设备移到新孔位上。
10.工艺流程图
三、质量控制
1.桩位偏差<5cm,钻孔垂自度<1%H.
2.钻杆要进行量测,并作记录,经常检查孔深,保证孔深达到设计要求。
3.严格按设计配合比例率拌制水泥浆液,拌制好的水泥浆液超过2小时不能使用。
4.旋喷桩施工中,严格控制空压机、高压水泵、送浆泵的压力和提升喷浆速度。
5.提升过程中,拆卸钻杆后,继续旋喷施工时,保持钻杆有不小于10cm的搭接长度。
6.经常检查高压系统、管道系统、使压力、流量能够达到规范要求以保证桩径达到设计要求。
四、注意事项
1.在旋喷桩施工区最外围的一排桩采用1,5,9…,间隔跳打的方法进行施工,围内部采用不跳桩按次序施工。
2.钻机或旋喷机就位时机座要平稳,立轴或转盘要与孔位对正,倾角与设计误差一般不得大于0.5°。
3.喷射注浆前要检查高压设备和管路系统。设备的压力和排量必须满足设计要求,管路系统的密封圈必须良好,各通道和喷嘴内不得有杂物。
4.喷射注浆作业后,由于浆液析水作用,一般均有不同程度收缩,使固结体顶部出现凹穴,所以应及时用水灰比为0.6的水泥浆进行补灌,并要预防其它钻孔排出的泥上或杂物进入。
5.为了加人固结体尺寸,或对深层硬上,为了避免固结体尺寸减小,可以采用提高喷射压力、泵量或降低回转与提升速度等措施,也可以采用复喷工艺:第一次喷射(初喷)时,不注水泥浆液,初喷完毕后,将注浆管边送水边下降至初喷开始的孔深,再抽送水泥浆,自下而上进行第一次喷射(复喷)。
6.在喷射注浆过程中,应观察冒浆的情况,以及时了解土层情况,喷射注浆的大致效果和喷射参数是否合理。采用单管或一重管喷射注浆时,冒浆量小于注浆量20%为正常现象,超过20%或完全不冒浆时,应查明原因并采取相应的措施。若系地层中有较大空隙引起的不冒浆,可在浆液中掺加适量速凝剂或增大注浆量,如冒浆过大,可减少注浆量或加快提升和回转速度,也可缩小喷嘴直径,提高喷射压力。
7.对冒浆应妥善处理,及时清除沉淀的泥渣。在砂层中用单管或二重管注浆旋喷时,可以利用冒浆进行补灌已施工过的桩孔。但在粘土层、淤泥层旋喷时,因冒浆中掺入粘上或清水,故不宜利用冒浆回灌
8.在软弱地层旋喷时,固结体强度低。可以在旋喷后用砂浆泵注入M15砂浆来提高固结体的强度。
9.在湿陷性地层进行高压喷射注浆成孔时,如用清水或普通泥浆作冲洗液,会加剧沉降,此时宜用空气洗孔。
10.在砂层尤其是干砂层中旋喷时,喷头的外径不宜大于注浆管,否则易夹钻。
11.在开钻前根据管线图摸清管线位置及走向,遇有不明管线应及时向上级汇报。
环保之家论坛感谢您的关注!环保之家,环保人的家!做出彩环保人!
旋喷桩机械设备
版权归原作者所有
三轴搅拌桩简介
三轴搅拌桩简介
三轴搅拌桩是长螺旋桩的一种,桩机同时有三个螺旋钻孔,施工时三条螺旋钻孔同时向下施工,一般用于地下连续墙工法使用,是软基处理的一种有效形式,利用搅拌桩机将水泥喷入土体并充分搅拌,使水泥与土发生一系列物理化学反应,使软土硬结而提高地基强度。
作用:
三轴搅拌桩在基坑围护工程起到重要的作用,一种中间不插型钢,只作为止水用,如需挡土应与其他工艺结合应用;一种是搅拌桩桩体内插H型钢(俗称SMW工法)既可以起到止水亦可以作挡土墙,适用于挖深较浅的基坑。
优点:
三轴搅拌桩与其他支护形式的桩相比,施工速度快,每幅成桩时间约30-40分钟(24小时可完成60m左右);成桩后止水效果显著;机械自动化控制,操作程序简单;人工投入少,施工成本低;并且三轴搅拌桩由于沟槽开挖完成后即可进行施工,现场不需要泥浆池,施工现场安全文明有保障。插入型钢后三轴搅拌桩既起到止水又起到支护作用;同时型钢可以回收利用。
缺点:
三轴搅拌机械及附属设施安装时间需要10天左右,而此机械及附属设施需要工作场地较大,所需水泥储存量大,同时用电量大,一台500Kw的变压器只能供应一台三轴搅拌机的运转。三轴的施工也需对地质情况进行考虑,适用于处理淤泥、淤泥质土、泥炭土和粉土土质。
三轴搅拌桩施工方法
三轴搅拌桩施工方法
水泥搅拌桩按材料喷射状态可分为湿法和干法两种。湿法以水泥浆为主,搅拌均匀,易于复搅,水泥土硬化时间较长;干法以水泥干粉为主,水泥土硬化时间较短,能提高桩间的强度,但搅拌均匀性欠佳,很难全程复搅。常见以湿法为主。
湿法与干法的选择以地勘报告提供的土含水率和施工现场环境决定。
桩机
桩机
该项工法要求对施工设备进行选型,选型的主要依据是桩深、桩截面形状和尺寸等,通常要确定的内容包括:桩机型号、桩架高度、加接次数、钻杆组合等。一般能够进行超深三轴搅拌桩施工的桩机为120m以上液压履带式桩机,桩架的高度一般为18m、24m、27m和33m。根据技术要求对桩架、电机和钻杆进行组装,组装要求至少需要有40m×20m的场地,并需要吊车配合施工。
三轴搅拌机三个钻头,两边两个进行浆液输送,中间一个为气孔,主要作用松动土体,防止翻浆,保证土体与水泥充分搅拌均匀。而且落钻时两边钻头正旋转,中间钻头反旋转。起钻时两边钻头反旋转,中间钻头正旋转。这样可以充分保证水泥浆液与土体充分搅拌均匀,减少气泡的存在,避免桩体沉降。
附属设施
附属设施
一台三轴搅拌机昼夜施工约用水泥72t,现场需储备足够水泥量以保证施工不中断。
桩机各设备使用功率
桩机各设备使用功率
三轴搅拌桩施工准备
三轴搅拌桩施工准备
三轴搅拌桩水泥浆浆液配合比必须提前报当地建筑工程质量检测中心进行验证,验证结果符合设计文件要求并报监理验收同意后方能开始施工。
开工前组织技术人员学习实施性施工组织设计,阅读、审核施工图纸,澄清有关技术问题,熟悉规范和技术标准。制定施工安全保证措施,提出应急预案。对施工人员进行安全技术交底,对参加施工人员进行上岗前培训,考核合格后持证上岗。
三轴搅拌桩桩机进场后必须经当地建筑工程检测中心检测合格后报当地安监部门备案并报监理验收,相关仪器仪表必须经当地计量检测单位检测合格后报监理验收,监理验收合格后方能施工。
三轴搅拌桩施工流程图
三轴搅拌桩施工流程图
三轴搅拌桩导槽施工
三轴搅拌桩导槽施工
根据桩位控制线,开挖导槽,并清除地下障碍物,导槽尺寸要求中心线两侧宽各0.6m,深1~1.5m,在施工中随打随挖,保证浆液不外溢,挖出的废浆液存放在现场指定空地,等施工结束后进行外运,达到文明施工要求。
三轴搅拌桩施工工艺
三轴搅拌桩施工工艺
1.场地平整:
清除一切地面和地下障碍物,场地低洼处先抽水和清淤,分层夯实回填粘性土,必要时可以掺拌石灰和水泥,确保桩机站位处地基稳定。
2.桩位布置:
按设计图排列布置桩位,在现场用全站仪定出每根桩的桩位,并做好标记,每根桩的桩位误差±50mm。放样后做好测量技术复核单,报监理复核验收,确定无误后方可施工。
3.桩机就位:
搅拌桩机到达作业位置,由当班机长统一指挥,移动前仔细观察现场情况,确保移位平稳、安全,待桩机就位后,用吊锤检查调整钻杆与地面垂直角度,确保垂直度偏差不大于1%。在桩机机架上画出以米为单位的长度标记,以便钻杆入土时观察、记录钻杆的钻进深度,确保搅拌桩桩长不少于设计桩长。
4.备制水泥浆:
按成桩工艺试验确定配合比拌制水泥浆,待压浆前将水泥浆倒入储浆桶中,制备好的水泥浆滞留时间不得超过2小时。
5.预搅下沉:
启动喷浆机,放松卷扬机钢丝绳,使浆喷桩机沿导向架自上而下浆喷切土下沉,开启灰浆泵同时喷浆,边喷浆边旋转,使水泥浆和原地基土充分拌合,直到下沉钻进至桩底标高,并原位喷浆30S以上。
6.提升喷浆搅拌:
确认浆液已到桩底时,以试验确定的速度提升搅拌钻头,边喷浆边旋转,提升到离地面50cm处或桩顶设计标高后再关闭灰浆泵,在原位转动喷浆30s,以保证桩头均匀密实。
7.重复上、下搅拌:
喷浆机提升到设计桩顶标高时,为使软土和水泥浆浆液均匀,再次将浆喷机边旋转边沉入土中,到设计加固深度后再将浆喷机提升至地面。
8.提钻,转移:
将搅拌钻头提出地面,停止主电机、空压机,填写施工旁站记录,桩机移位并校正桩机垂直度后进行下一根桩施工。
1
三轴搅拌桩施工顺序
三轴搅拌桩施工顺序如下图,其中阴影部分为重复套钻,保证止水帷幕的连续性和搭接的施工质量,水泥土搅拌桩的搭接以及施工设备的垂直度补正是依靠重复套钻(搭接250mm)来保证,以达到止水的作用。三轴搅拌桩施工顺序采用单侧跳打施工方式(注:搭接施工的相邻搅拌桩施工间隔不得超过16小时)。
除单侧跳打施工方式外,三轴搅拌桩施工还有单侧挤压施工方式,见下图。当施工条件受到限制,桩机无法来回行走,采用此施工顺序。
三轴搅拌桩钻进及提升
三轴搅拌桩钻进及提升
三轴搅拌桩桩身采用两喷两搅施工工艺,水泥和原状土需均匀搅拌,下沉和提升过程中均为喷浆搅拌,同时严格控制下沉和提升速度。
下沉速度:0.5—1.0m/min
提升速度:1.0—1.5m/min
在桩底部分重复搅拌注浆。
按照三轴搅拌桩的施工工艺,三轴搅拌机在下钻时,注浆的水泥用量占总数的70%~80%,而提升时为20%~30%。按照技术交底要求均匀、连续注入拌制好的水泥浆液,钻杆提升完毕时,设计水泥浆液全部注完。
水泥用量计算
开钻前对拌浆工作人员做好交底工作,在施工现场配备电脑计量的自动搅拌系统和散装水泥罐,以确保浆液质量的稳定。水泥浆液的水灰比为0.5,水泥掺量不小于20%(注:弱加固区水泥掺入量为8%)。
水泥用量计算:M=H*S*P*I
M——单排桩水泥用量,单位为吨。(单排桩为咬合的三排桩。)
H——为桩基长度,单位为m。
S——单排桩截面积,取1.5m2。
P——被搅拌土体密度,淤泥质粘土取1740Kg/m3。I——水泥掺入量,取20%。
水泥浆液制备及注入
水泥浆配置好后,停滞时间不得超过2小时,因故搁置2小时以上的拌制浆液,应作废浆处理,严禁使用搭接施工的相邻搅拌桩施工间隔不得超过12小时。注浆时通过2台注浆泵2条管路进行混合,注浆压力为1.5Mpa~2.5Mpa,注浆流量为80~120L/min/每台。
施工冷缝处理
冷缝:当一根桩与相邻搭接桩施工时间间隔超过水泥凝结时间,桩体之间搭接必然出现施工冷缝,基坑开挖后承压水可能会从施工冷缝中渗出。直接影响到止水帷幕的止水效果。
产生的主要原因
(1)遇到深层(普通挖掘机难以触及)障碍物;
(2)机械故障或停电;
(3)由于其他施工需要而人为安排造成。
施工冷缝处理
施工过程中只要出现冷缝,则采取在冷缝处桩外侧补搅设计参数相同的搅拌桩或采取其它补救措施(如高压旋喷桩)。在搅拌桩初始施工处和终止施工处做好标记,待适当时候补强处理。
水泥用量问题
水泥用量过多或过少主要表现形式
(1)提升喷浆未到设计顶面标高,储浆桶内浆液已排空,即水泥浆用量多;
(2)提升喷浆到设计顶标高,储浆桶内浆液剩余过多,即水泥浆用量过少。
水泥浆过多产生的主要原因
(1)后台投料不准,未按照规定的水灰比制备水泥浆;
(2)灰浆泵磨损严重,不能按照既定的效率注浆;(3)灰浆泵输浆量过大,超出了设计要求的范围。
水泥用量问题
水泥浆过少产生的主要原因
(1)后台拌浆加水过量,水泥浆总体积过大;
(2)输浆管部分堵塞,原本该注入的水泥浆没有足量注入。
水泥浆过多治理措施
(1)重新标定投料量;
(2)检修灰浆泵,灰浆泵往往由于故障而产生既定的流量偏差,此时必须进行校定;
(3)重新标定灰浆泵输浆量。校正完成后,在灰浆泵及钻杆之间输浆管的线路上以流量表来确定输浆量,最终确定注浆压力,一般为0.8~2.5Mpa。
水泥用量问题
水泥浆过少治理措施
(1)重新标定投料量;
(2)清洗输浆管路
1)由于桩机故障或停电引起的储浆桶内水泥浆放置时间超过2小时,此水泥浆严禁再用,作为废浆处理;
2)在搅拌桶与储浆桶之间设置过滤网,其网眼尺寸为2×2mm,避免水泥杂质颗粒进入到泥浆泵或输浆管路内而造成堵塞。
冒浆严重问题
搅拌桩钻进或提升过程中水泥土浆液面未与孔口保持水平,水泥土浆液溢出。
冒浆严重问题
产生的主要原因:
(1)施工工艺选择不当;
(2)粘土颗粒之间粘结力强,不易拌合均匀,搅拌过程中易产生抱钻;有些土层不是粘土,容易拌合均匀,但由于上复压力较大,持浆能力差,易冒浆。
主要治理措施:
(1)对不同土层选择合适的工艺;
(2)搅拌桩机沉入前,搅拌桩位要注水,使搅拌头湿润,地表为粘土时,可掺入适当砂子,改变土层粘度;由于输浆过程中土体持浆能力的影响产生冒浆,使得实际输浆量小于设计量,这时应采取“输水搅拌→输浆搅拌→一起搅拌”工艺,并将搅拌机转速提高到50r/min,使搅拌均匀,减少冒浆。
特殊情况处理措施
1、有异常时,如遇无法达到设计深度进行施工时,应及时上报业主、设计、监理,经各方研究后,采取补救措施。
2、在碰到地面沟或地下管线无法按设计走向施工时,宜与业主、设计单位、监理共同协商,确定解决办法。
3、施工过程中,如遇到停电或特殊情况造成停机导致成桩工艺中断时,均应将搅拌机下降至停浆点以下0.5m处,待恢复供浆时再喷浆钻搅,以防止出现不连续桩体。如因故停机时间较长,宜先拆卸输浆管路,妥为清洗,以防止浆液硬结堵管。
七天天气预报
成都
青岛
广州
西安
深圳
数据来源:中央气象台
2020-10-12
==============================
大方建设,诚、实、信。
四川大方建设工程有限公司
地址:成都市武侯区武兴一路8号10栋5层6号
传真:028-87343316
邮箱:dafangjianshe@163.com
点“在看”,分享给朋友↓
旋喷桩机型号规格表
高压旋喷桩实例及规范汇总
20号主墩承台边缘与京沪高铁四道中心线相距22.1m。21号主墩承台边缘与西牵出线中心线相距8.9m。主墩承台基坑深约6m,防护结构采用直径1.25m、桩长20m混凝土防护桩,配合1m高1.25m宽混凝土冠梁。基坑防护结构范围内土质主要为粉砂、粉土和粉质黏土。为避免高铁发生沉降,严禁基坑降水开挖。采用高压旋喷止水帷幕和基坑封底,使基坑在封闭隔水空间内开挖。防护结构如下图所示:
高压旋喷桩施工应参考《建筑地基处理技术规范》JGJ79 2012第7.4.8条。具体规定如下:
3.施工验收参数
1.理论水泥掺入量:30%(土层密度取1.95t/m3,单位桩长水泥用量225.1kg/m);
2.水泥型号:P.O42.5普通硅酸盐水泥;
3.钻头喷浆转速:10r/min;
4.水灰比:1:1.0(SJ-25A),1:1.1(SJW-60);
5.钻杆喷浆提升速度:24cm/min(SJ-25A),22cm/min(SJW-60);
6.水泥浆压力30MPa,气流压力>0.7MPa;
验收部分:
4.施工现场视频
有话说,就点击“参与讨论”留言吧!
三连了解下,分享、点赞、在看(^_^)!