永磁同步电机型号(永磁同步电机型号及参数大全)
永磁同步电机型号规格
电机的全部型号为:Y2-100L-2-3.0KW,Y2代表普通三相异步电动机,是Y系列电机的二次改型的产品(目前已经被YP2系列或YX3系列电机取代);100代表电机的中心高,是电机底脚平面到电机的轴中心的高度;L代表相同中心高电机的不同铁芯长度,也是区分相同中心高,不同电机功率的标记;后面的2代表着电机的极数,也是代表着电机的转速,后面的3.0KW是电机的功率。
永磁同步电机型号及参数大全
PMSM、IPMSM、SPMSM。
1、PMSM,即永磁同步电机的英文缩写,适用于中功率应用。
2、IPMSM,即永磁同步电机(内转子),适用于大功率应用。
3、SPMSM,即表面永磁同步电机,适用于小功率和高速应用。
永磁同步电机型号及参数对照表
你这个有可能是你的导师自己命名的电机型号,不是某厂家或常用电机型号,所以猜个组合给你参考,你再斟酌一下对不对:185--电机中心高1200--电机额定转速06--电机极数20--电机额定功率(中心高185,功率差不多20kW)
永磁同步电机型号命名
引 言
永磁同步电机的运行原理与电励磁同步电机相同,但它以永磁体提供的磁通代替后者的励磁绕组励磁,使电机结构更为简单。近年来,永磁材料性能的改善以及电力电子技术的进步,推动了新原理、新结构永磁同步电机的开发,有力地促进了电机产品技术、品种及功能的发展,某些永磁同步电机已形成系列化产品,其容量从小到大,目前已达到兆瓦级,应用范围越来越广;其地位越来越重要,从军工到民用,从特殊到一般迅速扩大,不仅在微特电机中占优势,而且在电力推进系统中也显示出了强大的生命力。
1.热点
永磁同步电机采用永磁体励磁,具有电励磁电机无可比拟的优点。
1)效率高:在转子上嵌入永磁材料后,在正常工作时转子与定子磁场同步运行,转子绕组无感生电流,不存在转子电阻和磁滞损耗,提高了电机效率。
2)功率因数高:永磁同步电机转子中无感应电流励磁,定子绕组呈现阻性负载,电机的功率因数近于1,减小了定子电流,提高了电机的效率。同时功率因数的提高,提高了电网品质因数,减小了输变电线路的损耗,输变电容量也可降低,节省了电网投资。
3)起动转矩大:在需要大起动转矩的设备(如油田抽油电机)中,可以用较小容量的永磁电机替代较大容量的Y系列电机。如果37kw永磁同步电机代替45kW~55kW的Y系列电机,较好地解决了“大马拉小车”的现象,节省了设备投入费用,提高了系统的运行效能。
4)力能指标好:Y系列电机在60%的负荷下工作时,效率下降15%,功率因数下降30%,力能指标下降40%;而永磁同步电机的效率和功率因数下降甚微,当电机只有20%负荷时,其力能指标仍为满负荷的80%以上。
5)温升低:转子绕组中不存在电阻损耗,定子绕组中几乎不存在无功电流,因而电机温升低。
6)体积小,重量轻,耗材少:同容量的永磁同步电机体积、重量、所用材料可以减小30%左右。
7)可大气隙化,便于构成新型磁路。
8)电枢反应小,抗过载能力强。
2.发展现状
永磁同步电机的发展和永磁材料的发展息息相关。新型永磁材料的出现大大促进了永磁同步电机的发展。二十世纪八十年代钕铁硼稀土永磁材料问世,由于钕资源丰富,以廉价的铁取代昂贵的钴,价格相对低廉。钕铁硼稀土永磁材料磁性能好,极大地推动了永磁同步电机的开发。
2.1发展成果
我国十分重视钕铁硼永磁电机的研究开发,并列入了国家“863”攻关计划。经过多年的研究开发,取得了丰硕成果,开发了5种类型22个典型规格的高性能永磁同步电机样机 。
1)3种典型规格的高效、高起动转矩永磁同步电动机样机,成功地解决了起动转矩高、节能效果好、高温不退磁和成本合理这4项互相制约的矛盾。表1给出了我国开发的用于油田抽油机的37kW稀土永磁同步电机与感应电动机的性能比较 。表2给出了我国新近开发的用于风机、泵类作业中功率为1120kW的稀土永磁同步电动机与感应电动机和电励磁同步电动机的性能对比 。
2)化纤机械用高效高牵入同步钕铁硼永磁同步电动机(6个规格)。与现有电机相比,所:开发电机的功率因数、效率和最大转矩倍数都有不同程度的提高,失步转矩是原有的3.59倍,牵转矩提高了3倍。
3)机床主轴用7.5kW高恒功率调速比钕铁硼永磁同步电动机和驱动系统。开发的永磁同步电动机调速系统的调速范围为0.4r/rain~9000r/min(国内同规格的主轴感应电动机的调速范围仅为8r/min~8000r/re_in),恒功率调速比达到1:6。
4)电动汽车用永磁同步电动机和驱动系统。开发的7.5kW轻微型电动客车用永磁同步电动机系统,电机重量为45kg,磁体用量为0.92kg,额定转速为3000r/min,最高转速5500r/min。样机系统整体额定效率达89.1%,1h持续转矩密度为0.74N·m/kg(风冷),15min持续转矩密度为1.123N·m/kg(日本AISIMAW样机,1h持续转矩密度为0.78N·m/kg)(油冷),15min持续转矩密度为1.178N·m/kg。
5)高起动能力钕铁硼永磁起动机电机(4个规格样机)。所开发的电机把原来永磁磁极的一部分换为廉价的软铁辅助磁极,节省钕铁硼永磁材料约30%。
2.2存在问题
在开发高性能永磁同步电机过程中,取得上述成果的同时,也得到了一些问题,有待于更深入地研究和探索。
1)不可逆退磁问题。如果设计或使用不当,永磁同步电机在过高(钕铁硼永磁)或过低(铁氧体永磁)温度时,在冲击电流产生的电枢反应作用下,或在剧烈的机械振动时有可能产生不可逆退磁,或叫失磁,使电机性能下降,甚至无法使用。
因此,既要研究开发适用于电机制造厂使用的检查永磁材料热稳定性的方法和装置,又要分析各种不同结构型式的抗去磁能力,以便设计和制造时,采用相应措施保证永磁同步电机不失磁。
2)成本问题。铁氧体永磁同步电机由于结构工艺简单、质量减轻,总成本一般比电励磁电机低,因而得到了广泛应用。由于稀土永磁目前的价格还比较贵,稀土永磁电机的成本一般比电励磁电机高,这需要用它的高性能和运行费用的节省来补偿。在设计时既需要根据具体使用场合和要求进行性能、价格的比较后取舍,又要进行结构工艺的创新和设计优化,以降低成本。
3)控制问题。永磁同步电机不需外界能量即可维持其磁场,但这也造成从外部调节、控制其磁场极为困难。但是随着MOSFET、IGBT等电力电子器件和控制技术的发展,大多数永磁同步电机在应用中,可以不进行磁场控制而只进行电枢控制。设计时需把永磁材料、电力电子器件和微机控制三项新技术结合起来,使永磁同步电机在崭新的工况下运行。此外,以永磁同步电机作为执行元件的永磁交流伺服系统,由于永磁同步电机本身是具有一定非线性、强耦合性和时变性的系统,同时其伺服对象也存在较强的不确定性和非线性,加之系统运行时易受到不同程度的干扰,因此采用先进控制策略、先进的控制系统实现方式(如基于DSP控制),从整体上提高系统的智能化和数字化水平,这应是当前发展高性能永磁同步电机伺服系统的一个主要突破口。
3.发展趋势
永磁同步电机以其效率高、比功率大、结构简单、节能效果显著等一系列优点在工业生产和日常生活中逐步得到广泛应用。尤其是近年来高耐热性、高磁性能钕铁硼永磁体的成功开发以及电力电子元件的进一步发展和改进,稀土永磁同步电机的研究开发在国内外又进人了一个新的时期,在理论研究和应用领域都将产生质的飞跃,目前正向超高速、高转矩、大功率、微型化、高功能化方向发展。
3.1超高速电机
永磁同步电机不需要励磁绕组,结构比较简单,磁场部分没有发热源,不需要冷却装置,材料的矫顽力高,气隙长度可以取较大值从而使大幅度提高转速成为可能。目前已制成(2~3)X10r/rain的电机,如美国通用电气公司研制的150kW、23000r/min的径向气隙型转子结构航空用稀土永磁发电机,外转子型用于电动车的7.2kW、27000r/rain的电机。目前正在研制每分钟几十万转的电机。
3.2高转矩大功率电机
耐热、高磁性能钕铁硼永磁材料的开发成功将使其在大功率永磁同步电机中获得重要应用。运输业和工业中诸如电动汽车、混合型(内燃机与电动机并用)动力汽车、列车、电梯、机床、机器人等,对大功率电动机的需求正在增长。
船舶推动电机要求低速大转矩。德国西门子公司于1986年研制1095kW、230r/rain的六相永磁同步电动机,用于舰船的推进,与过去使用的直流电动机相比,体积可减小60%左右,损耗可降低20%左右。另外1760kW永磁同步推进电机装于U.212潜艇试用,其长度和有效体积与传统的直流推进电机相比减少40%。瑞士ABB公司已经建造了超过300艘的电力推进船舶最大安装容量达到了2X19MW,其研制的400kW到3MW永磁同步电机用于:“Com-paetA~ipod”吊舱式电力推进系统。法国热蒙工业公司1987年研制的400kW、500r/rain永磁电机样机与直流电机相比,体积也减少了40%。1996年,12相、1800kW、180r/rain永磁推进电机及控制装置已完成研制及所有的实船试验。同年,英国展出了“海航”号轻型隐身护卫舰设计模型。该舰装有两台21MW永磁同步电机在巡航或隐身时直接驱动螺旋桨。
3.3微型化
由于钕铁硼永磁的最大磁能积很高,特别是能制成超薄型的永磁体,从而使过去难以制作的超微型和低惯量电动机得以实现。目前已开发出直径几毫米以下的超小型电动机用作医疗微型机器、眼球手术用机器人手臂或管道检查用机器人等场合的驱动源。现已制成外径0.8mm、长1.2mm的世界上最小的永磁电动机。
3.4高功能化
在高温、高真空度或空间狭小等特殊场合难以使用传统电机,而稀土永磁电机可以耐高温(指钐钴或高耐热性钕铁硼磁体),且体积小,正好能满足这些特殊要求。宇航设备中的机械手、原子能设备的检查机器人和半导体制造装置等特殊环境下工作的电动机,需要使用高温电动机和高真空电动机。已开发的有150W、3000r/min,工作在200oC~300oC高温和133.3X10Pa真空度环境下的三相四极永磁电动机,直径105mm、长145mm,采用高温特性好的Sm2Co永磁体。
4.结语
21世纪,科学技术飞速发展,高新技术不断涌现,节电、环保意识日益增强,使得永磁同步电机发展的前途一片光明,尤其是高性能稀土永磁同步电机及其伺服系统,随其技术的快速发展和日渐成熟,结构型式将日趋多样化,也将会赢得更为广泛的发展空间,获得更加广泛的应用。
第一部分新能源汽车电驱动系统行业发展背景
第一节全球新能源汽车市场格*
一、全球新能源汽车市场概况
二、全球新能源汽车市场规模
三、全球新能源汽车技术路线
四、主流车企市场格*及发展规划
第二节中国新能源汽车发展政策
一、新能源汽车主要政策及趋势
二、新能源汽车补贴标准及影响
第三节中国新能源汽车市场格*
一、市场规模及预测
二、细分市场情况
(一)新能源乘用车市场
(二)新能源客车市场
(三)新能源专用车市场
三、新能源车企格*及规划
第二部分新能源汽车电驱动系统技术及市场分析
第一节新能源汽车电驱动系统技术现状及走势
一、新能源汽车电驱动系统构成
(一)驱动电机(主流电机类型及性能对比、技术参数、技术趋势)
(二)变速器(主流产品类型及性能对比、技术参数、技术趋势)
(三)功率变换器(主流产品类型及性能对比、技术参数、技术趋势)
(四)其他
二、电驱动系统行业标准及最新动态
三、电驱动系统技术特征及发展趋势
四、主流企业技术优劣势对比
第二节全球新能源汽车电驱动系统市场及企业分析
一、全球电动驱动系统主流品牌格*
二、国外重点电驱动产品技术现状
三、国内外电驱动产品技术差异及评价
第三节新能源汽车电驱动系统市场分析
一、电驱动系统市场规模及趋势
(一)2015-2020年市场规模及空间预测
(二)2016-2017年主流企业竞争格*(国内外主流品牌市场占有率)
(三)2016-2017年下游车企应用格*
二、新能源汽车电驱动系统应用配套情况
(一)新能源乘用车应用配套情况
(二)新能源客车应用配套情况
(三)新能源专用车应用配套情况
第三部分新能源汽车电驱动系统重点企业分析
(本部件企业的分析,客户可自行提供)
第一节企业一
一、企业基本情况分析
(一)简介
(二)股权结构
(三)经营情况
二、技术研发
(一)技术研发水平
(二)技术优势
三、产品及业务
(一)产品及业务类型
(二)现有产品规格及参数
(三)产品规划
四、营销及客户
(一)客户分析
(二)市场分布及规划
五、生产及规划
(一)基地情况
(二)发展规划
六、总体评价
……
第四部分新能源汽车电驱动系统市场前景及投资分析
第一节行业趋势及市场前景
第二节行业投资壁垒
第三节行业投资机会分析
【报告咨询】:李先生 182-1920-6950 service@ylz360.com
2017年,一览众咨询将陆续发布《新能源汽车产业链重点企业深度调研报告》。企业深度报告针对零部件细分市场,包括动力电池、电动系统、电机及驱动系统、充电环节、电子元器件等领域。
【调研】车载充电机市场调研报告(点击进入)
【调研】电动制动真空泵市场调研报告
【调研】氢燃料电池汽车市场调研报告
【调研】电动汽车无线充电市场调研报告
【调研】新能源汽车用空调市场调研报告
【调研】新能源汽车电机市场及企业调研
【报告】48V汽车系统市场及主流企业报告
【调研】充电设施市场调研报告
【调研】动力电池市场及企业调研
【调研】新能源汽车BMS市场及企业调研
【报告】电机控制器市场及重点企业分析
【报告】新能源汽车整车控制器VCU市场分析
【报告】新能源汽车DC/DC转换器市场及企业分析
【调研】电动汽车高压继电器市场及企业分析
【调研】新能源汽车高压连接器企业调研
【调研】动力电池回收市场调研报告
【调研】电动汽车高压配电箱市场调研报告
【调研】汽车启停电池市场调研报告
【注明】:“公司名称+姓名”
“一览众车”是一览众咨询旗下专注于汽车产业链领域数据及报告发布平台
永磁同步电机型号含义图解
由于其紧凑性和高扭矩密度,永磁同步电机在许多工业应用中得到了广泛的应用,特别用于高性能驱动系统,如潜艇推进系统。永磁同步电机无需使用滑环进行励磁,从而降低了转子的维护和损耗。永磁同步电机效率高,适用于高性能驱动系统,如工业中的数控机床、机器人和自动生产系统。通常,永磁同步电机的设计和构造必须同时考虑定子和转子结构,以获得高性能电机。
永磁同步电机的构造
气隙磁通密度:根据异步电机设计等确定,永磁转子的设计和使用开关定子绕组的特殊要求技巧此外,假设定子为开槽定子。气隙磁通密度受到定子铁芯饱和的限制。尤其是峰值磁通密度受轮齿宽度的限制,而定子背面决定了最大总磁通。此外,允许的饱和水平取决于应用。通常,高效电机的磁通密度较低,而设计用于最大扭矩密度的电机的磁通密度较高。气隙磁通密度峰值通常在0.7–1.1Tesla范围内。应注意,这是总磁通密度,即转子和定子磁通的总和。这意味着如果电枢反作用力较小,意味着对准扭矩较高。然而,为了实现较大的磁阻转矩贡献,定子反作用力必须很大。机器参数表明,主要需要大m和小电感L来获得对准扭矩。这通常适用于低于基本速度的运行,因为高电感会降低功率因数。
永磁材料:
磁铁在许多设备中起着重要作用,因此,改善这些材料的性能非常重要,目前,人们的注意力集中在基于稀土金属和过渡金属的材料上,这些材料可以获得具有高磁性的永磁体。根据技术的不同,磁铁具有不同的磁性和机械性能,并表现出不同的耐腐蚀性。钕铁硼(Nd2Fe14B)和钐钴(Sm1Co5和Sm2Co17)磁体是当今最先进的商业化永磁材料。在每一类稀土磁体中都有广泛的各种等级。钕铁硼磁体于20世纪80年代初开始商业化。它们广泛存在今天在许多不同的应用中使用。这种磁铁材料的成本(按每种能源产品计算)与铁氧体磁铁的成本相当,按每公斤计算,钕铁硼磁体的成本大约是铁氧体磁体的10到20倍。
用于比较永磁体的一些重要特性是:剩磁(Mr),它测量永磁体的强度磁场,矫顽力(Hcj),材料抗退磁的能力,能量积(BHmax),密度磁能;居里温度(TC),温度材料失去磁性时。钕磁体具有更高的剩磁、更高的矫顽力和能量积,但居里温度通常较低类型,钕与铽和镝在为了在高温下保持其磁性。
永磁同步电机设计
在永磁同步电机(PMSM)的设计中,永磁转子的构造基于三相感应电机的定子框架,不改变定子和绕组的几何形状。规格和几何形状包括:电机的速度、频率、极数、定子长度、内外直径、转子槽数。永磁同步电机的设计包括铜损耗、反电动势、铁损和自感和互感、磁通、定子电阻等。
自感和互感的计算
:电感L可以定义为磁链与产生磁通的电流I的比率,单位为亨利(H),等于韦伯每安培。电感器是用来在磁场中储存能量的装置,类似于电容器在电场中储存能量。电感器通常由线圈组成,通常缠绕在铁氧体或铁磁芯上,其电感值仅与导体的物理结构以及磁通通过的材料的磁导率有关。
查找电感的步骤如下:1、假设导体中有电流I。2、使用毕奥-萨伐尔定律或安培环路定律(如果有)确定B足够对称。3、计算连接所有回路的总通量。4、将总磁通乘以回路数,得到磁链,通过对所需参数的评估,进行永磁同步电机的设计。
研究发现,采用钕铁硼作为交流永磁转子材料的设计提高了气隙中产生的磁通,导致定子内半径减小,而采用钐钴永磁转子材料的定子内半径较大。结果表明,钕铁硼中的有效铜损耗降低了8.124%。对于作为永磁材料的钐钴,磁通量将是一个正弦变化量。通常,永磁同步电机的设计和构造必须同时考虑定子和转子结构,以获得高性能电机。
结论
永磁同步电机(PMSM)是一种利用高磁性材料进行磁化的同步电机,具有效率高、结构简单、易于控制等特点。这种永磁同步电动机在牵引、汽车、机器人和航空航天技术等多个领域都有应用,永磁同步电机的功率密度高于相同额定值的感应电机,因为没有专门用于产生磁场的定子功率。目前,永磁同步电机的设计不仅要求功率更大,而且要求质量更低、转动惯量更小。
END
#文中部分图片来源网络
如有侵权,请联系删除
为您服务项目
项目信息招标中标 会议策划软文写作新闻采访
品牌宣传人才招聘宣传制作专题报道电机周刊
中国电机发展网|中国电机行业网络优秀服务平台
欢迎投稿|预定广告
戳这里
备注“姓名+公司或产品
永磁同步电机型号参数表
RIO电驱动
专注于新能源汽车及三电相关领域知识和资讯的分享。
「前 言」
“三相永磁同步电机的数学模型由电机的参数构成,然而当实际设计电机的时候,设计的其实是电机的几何结构,因此如何理解电机几何结构与电机参数之间的关系,是电机设计最根本的问题。”
第一部分
理想情况下,不考虑电机过渡过程,忽略绕组电阻,三相永磁同步电机的数学模型在dq坐标系下由三个参数构成:永磁励磁磁链ψf,交轴电感Lq和直轴电感Ld。满足磁链方程、电压方程和转矩公式。
ψd=ψf+LdId
ψq=LqIq
Ud=-dψq/dt
Uq=dψd/dt
Te=1.5p[ψfIq+(Ld-Lq)IdIq]
这里不细谈上述方程,相关书籍中均有详细说明。
本文讲解永磁励磁磁链ψf与电机几何结构的关系,后续会继续讲解交轴电感Lq、直轴电感Ld与电机几何结构的关系。
永磁励磁磁链ψf的公式如下:
ψf=NkΦ
其中,N为绕组匝数,k为绕组系数,Φ为每极永磁磁通。很明显,永磁励磁磁链ψf与绕组匝数、绕组系数、单极永磁磁通成正比。
每极永磁磁通Φ的公式如下:
Φ=∫BdS
其中,B为定子表面磁密,S为极面积。极面积与定子内径、定子铁心叠长成正比,与电机极数成反比。
至此,已经说明了永磁励磁磁链与大部分结构之间的关系,仅定子表面磁密与几何结构之间的关系尚不明确,下面就定子磁密与电机几何之间的关系做详细说明。
定子表面磁密与几何之间的关系主要分为以下三类:
永磁体充磁横截面积;
永磁体的工作点;
漏磁。
选用Maxwell提供的RMxprtExampleipm_2作为仿真算例。
永磁体充磁横截面积
增加永磁体充磁横截面积,可以增加定子表面磁密,两者几乎是成正比的关系。
永磁体的工作点
影响永磁体的工作点的主要因素有两点:
永磁体自身磁动势;
磁路的磁阻。
永磁体自身磁动势由永磁体充磁方向的长度和永磁体矫顽力决定。永磁体的材料及牌号确定,则矫顽力确定,本文不讨论永磁体材料对电机参数的影响。
永磁体充磁方向长度越长,则磁动势绝对值越大,永磁体工作点越高,定子表面磁密越大。
磁路的磁阻越大,永磁体工作点越低,定子表面磁密越小。
影响磁路磁阻的因素主要是气隙长度和定转子铁心饱和程度。
定子饱和程度的变化通过调整定子齿宽来实现。
漏磁
漏磁越多,越多的磁通不经过定子,直接从永磁体的N极回到S极,则定子表面磁密则越小。漏磁也会一定程度的影响永磁体工作点,不过影响比较小,不作为主要影响因素。
影响漏磁的主要因素是隔磁桥的宽度,气隙的长度、定子槽口的宽度等也会对漏磁产生轻微的影响。
以隔磁桥为变量,比较不同漏磁情况下的定子表面磁密如下:
当然,上述三种影响因素并不是独立存在,相互之间都存在一些或强或弱的关联,因此在电机设计的时候要整体考虑。
第二部分
在永磁牵引电机行业,特别是新能源汽车驱动电机,工程师们总是追求设计出高凸极比的电机,即希望交轴电感Lq/直轴电感Ld的比值越大越好。究其原因,当下的电力电子器件耐压能力有限,而牵引电机往往有较大的调速比,因此不得不降低牵引电机的反电势,与此同时,电机还要能够在尽量维持电流不变的情况下提高输出转矩。
按照转矩公式:
Te= 1.5p[ψfIq+(Ld-Lq)IdIq]
在降低ψf、电流保持不变的情况下,若要维持电磁转矩Te不下降,增加Ld与Lq差的绝对值是一个好办法。一般情况Id为负值,Iq为正值,Ld小于Lq,所以凸极比Lq/Ld越大,Ld与Lq差的绝对值往往也越大。
增大Ld与Lq差值有两个很明显的方法,其一是增大Lq,其二则是减小Ld。这一期就来讲解如何从结构上来实现对Lq的调节。
根据磁链方程:
Lq= ψq/Iq= NΦq/Iq = NΛqFq/Iq
Fq=NIq
其中,N为绕组匝数,ψq为q轴磁链,Φq为q轴磁通,Λq为q轴磁路磁导,Fq为q轴电枢磁动势,由此可知:
Lq=N²Λq
Lq与绕组匝数的平方和q轴磁路磁导成正比。q轴磁路不经过永磁体,由定子铁心→气隙→转子铁心→气隙→定子铁心形成闭环,磁导由三部分构成:
Λq=1/(1/Λs+1/Λr+1/Λg)
磁导公式:
Λ= μS/l
其中,μ为磁导率,S为面积,l为长度。由上述可知,q轴磁导与气隙长度、面积,定子、转子铁心的饱和程度有关。
下面就上述理论进行仿真验证。选用Maxwell提供的RMxprtExampleipm_2作为仿真算例。
气隙
由于空气中的相对磁导率一般认为是常数,影响气隙磁导的因素主要有两个:极面积和气隙长度(定转子开槽可用卡氏系数修正附加到气隙长度上,不单独列出)。极面积与定子内径、铁心长度成正比,与极数成反比。定子内径和极数属于一般不做微调项,在此仅验证铁心长度与Lq之间的关系。
定子铁心
影响定子铁心磁导的主要因素是定子铁心的饱和程度,由于硅钢片的相对磁导率很高,在合适的磁密下相对磁导率能达到5000以上。相对来说定子齿、轭面积以及长度对整个磁路的影响较小,但是齿、轭面积对定子铁心自身的饱和程度影响很大,当铁心内磁密程度达到一定值时,铁心的相对磁导率会急剧下降,可能达到100以下甚至10以下,这时定子铁心的磁导也会急剧下降。
定子饱和程度的变化通过调整定子齿宽来实现。
转子铁心
影响转子铁心磁导的因素与定子铁心相同,主要影响的部位为以下两项:
极间距;
转轴与永磁体间距(不考虑转轴导磁)。
有转子轴向通风孔的电机要考虑通风孔到转轴、磁钢之间的间距。
总之,这些地方的间距会影响到q轴磁路的饱和情况,进而影响Lq。
以极间距为变量,结果如下:
以转轴与永磁体的间距为变量,结果如下:
值得一提的是,输入电流Iq对q轴磁路定、转子铁心的饱和程度也有很大的影响,不过这不属于结构范畴,就不细致讨论了。
第三部分
上一部分讲到增大Ld与Lq差值有两个方法,其一是增大Lq,其二是减小Ld,并讲解了如何通过改动电机结构来调整Lq。这一期讲解直轴电感Ld与电机结构的关系。
直轴磁路和交轴磁路有很多原理是相同的。譬如在同步磁阻电机中,交、直轴不过是磁阻不同的两条磁路,原理是完全相同的。而在永磁同步电机中,直轴磁路因为经过了永磁体,永磁体对磁路产生了影响,因此永磁体是永磁电机中交、直轴磁路的唯一区别。正因为如此,所有对交轴电感产生影响的因素也对直轴电感产生同样的影响。需要注意的是交、直轴磁路在具体结构上有部分重合,例如定、转子轭部磁路重合,但并不是完全重合,重合部分交、直轴磁路铁心饱和同时对Lq和Ld都能产生影响。
根据磁链方程:
Lad= ψad/Id = NΛdFad/Id
Fad=NId
其中,N为绕组匝数,ψad为d轴电枢反应磁链,Λd为d轴磁路磁导,Fad为d轴电枢反应磁动势,由此可知:
Ld=Lad+Lσ=N²Λd+Lσ
其中Lad为电枢反应电感,Lσ为漏电感。
d轴磁路经过永磁体,由定子铁心→气隙→转子铁心→永磁体→转子铁心→气隙→定子铁心形成闭环,磁导由四部分构成:
Λd=1/(1/Λs+1/Λr+1/Λg+1/Λm)
磁导公式:
Λ= μS/l
其中,μ为磁导率,S为面积,l为长度。由上述可知,d轴磁导与气隙长度、面积,永磁体充磁方向长度、面积以及定子、转子铁心的饱和程度有关。
下面就上述理论进行仿真验证。依旧选用Maxwell提供的RMxprtExampleipm_2作为仿真算例。
气隙
原理与Lq相同,在此仅验证铁心长度与Ld之间的关系。
定子铁心
原理与Lq相同。定子饱和程度的变化通过调整定子齿宽来实现。
转子铁心
在内嵌式永磁同步电机中,直轴的磁路在转子铁心上一部分直接经过隔磁桥,另一部分经过永磁体然后经过转子轭部。
以隔磁桥宽度为变量,结果如下:
以转轴与永磁体的间距为变量,结果如下:
偶尔会出现转轴与永磁体距离越小反而Ld越大的情况,如下图所示,原因是硅钢片在磁密较低时,相对磁导率随磁密的上升反而增加。
永磁体
在仅考虑电枢反应的时候,永磁体往往可以看作空气层,其效果和空气层非常相似。以永磁体充磁方向长度为变量,结果如下:
其它相关思考
结构与参数之间的关系讨论完了,讨论这些的目的其实就是为了设计电机的时候对参数进行微调,使电机达到所需性能。参数与结构之间的关系往往不是独立的,所谓牵一发而动全身,参数的调整总是需要综合考虑各种因素。
这里要提一提同步磁阻电机。一个内嵌式永磁同步电机,去掉永磁体后,即成为一台同步磁阻电机。常常可以看到一些文章中提到同步磁阻电机的凸极比可以达到十几,而我们做永磁同步电机却很少能将凸极比做到3以上,原因为何?
前面的文章中也提到了,几乎每一个参数都与定、转子铁心的饱和有关,而且关系很密切。铁心在合适的磁密下相对磁导率可以超过5000,在过饱和的情况下相对磁导率则可以下降到5以内,即同样一个结构的磁路,在不同铁心饱和情况下,其磁导可以相差千倍以上,电感的变化也非常大。
以上述算例,将永磁体去掉,在不断增加电流的情况下我们来看一下交、直轴电感。
交、直轴电感都下降的很快,两者的差值也下降得很快。
转矩随电流的斜率是逐步降低的,在大电流时转矩的线性度不好。
如何获取案例?
小编李亚波将为您发送资料。
扫码添加好友,即可获得
2、凡注明“来源:XXX(非RIO电驱动)”的作品,均转载或摘取自其它媒体,转载或摘取目的在于传递更多信息,并不代表本平台赞同其观点和对其真实性负责。
3、本文仅供读者参考、学习、交流,不得涉及商业目的使用,如违反上述要求,本平台有权要求删除,并依法追究其相应法律责任。
永磁同步电机型号TYK-132S-5
采用永磁同步电机因其自身结构紧凑,功能齐全,集曳引电机、曳引轮、电磁制动器、光电编码器于一身,易于安装,便于使用,使得其在行业内近十年来大展身手、普遍开来。特别是在无机房电梯的开发应用中,将永磁同步曳引电机安装在电梯的井道里,既节约了机房的建造成本,又美化了建筑物外观。当电梯负载变化时,永磁同步电机通过调节夹角来适应,其响应速度很快。
为了使电梯有良好的起、制动舒适性和平层准确度,在系统中加入了准确的转子位置装置和电压电流检测装置,随时确定电机磁场的大小、方向。位置检测装置采用转子位置传感器(光电编码器或旋转变压器等)。轿厢负载检测装置可采用位置型、压力型等多种形式,对电梯负载进行预先测量并计算,给出恰当方向和大小的力矩,可输出开关量、模拟量(电压)和频率量(高频抗干扰性强,能远距离传送)等。
永磁同步电机,准确的讲,应该叫异步起动同步运转的永磁电机。这种电机,使用中可以同尺寸代替原来的Y,Y2,Y3等电机。减少了更换过程的麻烦。与普通电机相比,永磁电机有其自己的特点:
1、转速恒定,为同步转速。转速较普通电机稍高,比如普通电机4极转速为1400n/min多转,永磁同步电机转速就是1500n/min,丢转少。
2、功率因数高。永磁电机在正常运转时,转子转速和定子磁场转速一致,转子磁极采用永磁磁钢,没有电流,定子上感应电流减小,因此功率因数高。可以通过合理的设计,可使其工作在滞后功率因数、单位功率因数和超前功率因数。一般滞后功率因数都可以达到和超过0.95,大量使用永磁电机,可以省去无功功率补偿器等设备。
3、效率高,特别是运行效率高。永磁电机正常运转时,由于转子磁极采用永磁体--钕铁硼磁钢,靠永磁体的磁场就可以保证电机的正常运转,因此转子也就没有绕组损耗。转子铁耗也没有,因此效率较普通电机高的多。目前,永磁同步电机一般设计很容易达到GB/T18613-2012版规定的2级能效,甚至达到1级指标;而普通电机,设计达到相应的性能就比较麻烦,这在小功率电机中表现的尤为明显。
4、永磁同步电机具有较宽的经济运行范围。普通电机的经济运行范围一般为额定负载的60~100%,低于60%的负载时,电机的效率和功率因数曲线下降很快,运行效率和功率因数很低。而永磁同步电机的经济运行范围远比普通电机宽,不仅在额定负载时效率很高,而且在25~120%额定负载的范围内都有较高的效率,效率曲线比较平滑,变化不大。电机效率基本不低于额定效率的80%。而普通电机在35%额定负载附近效率迅速下降,能低至30~40%。永磁电机在25%的负载时,功率因数也可以达到0.9以上,越轻载功率因数越高;而普通电机从额定负载时的0.85左右迅速下降到0.5以下。
5、体积小,重量轻。由于永磁电机转子上应用了稀土永磁材料,损耗低,效率和功率因数高,达到同样的功率,在保证效率和功率因数的基础上,体积可以做的比普通电机小,重量可以轻。这在一些要求小机座号,做大功率的场合,具有普通电机不可比拟的优势。
6、堵转转矩倍数高。普通电机堵转转矩倍数一般是额定转矩1.6~2.3倍,而永磁电机的堵转转矩一般可达2.4倍以上,有些规格甚至可达到3.5倍以上。有些场合称永磁电机为“高效高起动转矩永磁同步电机”,在一些设备起动转矩要求高的情况下,很多采用高滑差电机,但效率很低;再者就是增大容量,以增大起动转矩,但实际运行时,负载率很低,效率和功率因数都很低,造成设施和能源的浪费。而使用永磁电机,达到同样的转矩,就可以适当的减小电机容量,永磁电机功率因数和效率都较高,节能效果就很明显。
7、可以实现低速高效率。普通电机10极以上的电机很少,不是技术上达不到,而是转速越低,效率做不高,而且机座号做的很大,功率很小,这在以前被认为划不来的事。而永磁电机可以把极数做的很高,异步起动永磁电机有24极的,甚至32极。转速做的很低,可以对一些设备采用直驱,省去减速设施,从节能的角度来讲,这样可以提高效率。而且永磁电机因为转子损耗小,虽然极数高,效率也可以做的很高,节能前景很好。
8、永磁电机成本高,加工工艺复杂。由于使用了高性能的稀土永磁材料钕铁硼,所以制造成本较高。永磁体放置在转子内部,设计和安装工艺复杂,也增加了制造成本。当然,随着新技术、新材料、新工艺的不断推陈出新,成本较永磁同步主机刚开始推行要减少的很多。
9、永磁电机的起动有自己的特点。一般永磁电机不可以采用降压起动方式,因为普通永磁电机(380V,50HZ),在电压降低到330V时,起动困难,转子抖动厉害。小功率的永磁电机一般采用直接起动的方式。大功率的永磁电机,在变压器容量足够大的情况下,而且对设备机械冲击要求不严的情况下也可以直接起动。否则,建议采用变频器驱动的软起动方式
10、三相交流永磁同步电动机的驱动,可以采用“定子绕组封星”方式,来提供电梯非驱动状态下,制动器失效时的电动机本身所产生的制动电磁转矩,以抑制意外状态下的“快速溜车”,但该连接方式所起到的作用不能与电梯的上行超速保护装置、电梯意外移动的保护装置混淆。
获取更多电梯信息