主页 > 型号大全 > 正文

电容器型号含义(电容器型号含义是什么)

2024-03-31 17:13:06 来源:阿帮个性网 点击:
文章目录导航:
  1. 电容器型号规格
  2. 电容器型号是如何表示的
  3. 电容器型号命名
  4. 电容器型号含义图解
  5. 电容器型号说明
  6. 电容器标号
  7. 电容器型号解读

电容器型号规格

问题比较广。要具体说是哪一类电容器。就我所知道的薄膜电容器而言。任意一个型号都可以得到产品相关的电气性能。如介质材质(聚丙,聚酯),容量大小,耐压(直流,交流),脚距等等。另外就是不同公司自己的内部编码了。2012年,随着国家的环保战略,耐压,大功率,高频需求逐渐增多。北京2013年年初的雾霾事件将环保节能推向制高点。各地**对纯电动公交车以及led户外照明,led路灯采购订单迅速增加。变频,节省,环保等大量信息覆盖了各大媒体头条。薄膜电容器行业进入另一个快速发展行业。还有经过一年时间冷却后,2013年3月初再次引爆话题的石墨烯超级电容市场环境如何。请关注搜狐微博、新浪微博:纬迪实业--薄膜电容。您将会了解到最新的薄膜电容器行业新闻。并请进入中国知网了解相关最新研究。

电容器型号是如何表示的

BAMRr12.5是一个电容器的型号,其中每个字母和数字代表不同的含义:

B:代表电容器的类型,B通常表示电解电容器;

A:代表封装形式,A通常表示有极间套管、引线端子的电容器;

M:代表电容器的材料,M通常表示电容器的正极材料为铝;

R:代表电容器的额定电压范围,R通常表示电容器的额定电压范围在160V~250V之间;

r:代表电容器的公差等级,r通常表示电容器的公差为±20%;

12.5:代表电容器的电容量,12.5通常表示电容器的电容量为12.5μF。

因此,BAMRr12.5电容器的意思是:一种电解电容器,封装形式为有极间套管、引线端子,正极材料为铝,额定电压在160V~250V之间,公差为±20%,电容量为12.5μF。

电容器型号命名

作为无源元件之一的电容,其作用不外乎以下几种:应用于电源电路,实现旁路、去藕、滤波和储能的作用,下面分类详述之。

1)旁路

旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。

为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连接处在通过大电流毛刺时的电压降。

2)去藕

去藕,又称解藕。从电路来说,总是可以区分为驱动的源和被驱动的负载。

如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作,这就是所谓的“耦合”。

去藕电容就是起到一个“电池”的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。将旁路电容和去藕电容结合起来将更容易理解。

旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。

高频旁路电容一般比较小,根据谐振频率一般取0.1?F、0.01?F等;而去耦合电容的容量一般较大,可能是10?F或者更大,依据电路中分布参数、以及驱动电流的变化大小来确定。

旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。这应该是他们的本质区别。

3)滤波

从理论上(即假设电容为纯电容)说,电容越大,阻抗越小,通过的频率也越高。但实际上超过1?F的电容大多为电解电容,有很大的电感成份,所以频率高后反而阻抗会增大。

有时会看到有一个电容量较大电解电容并联了一个小电容,这时大电容通低频,小电容通高频。电容的作用就是通高阻低,通高频阻低频。电容越大低频越容易通过,电容越大高频越容易通过。

具体用在滤波中,大电容(1000?F)滤低频,小电容(20pF)滤高频。

曾有网友形象地将滤波电容比作“水塘”。由于电容的两端电压不会突变,由此可知,信号频率越高则衰减越大,可很形象的说电容像个水塘,不会因几滴水的加入或蒸发而引起水量的变化。

它把电压的变动转化为电流的变化,频率越高,峰值电流就越大,从而缓冲了电压。滤波就是充电,放电的过程。

4)储能

储能型电容器通过整流器收集电荷,并将存储的能量通过变换器引线传送至电源的输出端。电压额定值为40~450VDC、电容值在220~150000?F之间的铝电解电容器是较为常用的。

根不同的电源要求,器件有时会采用串联、并联或其组合的形式,对于功率级超过10KW的电源,通常采用体积较大的罐形螺旋端子电容器。

应用于信号电路,主要完成耦合、振荡/同步及时间常数的作用:

1)耦合

举个例子来讲,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件。

如果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号较小的阻抗,这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。

2)振荡/同步

包括RC、LC振荡器及晶体的负载电容都属于这一范畴。

3)时间常数

这就是常见的R、C串联构成的积分电路。当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。

而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性通过下面的公式描述:

i=(V/R)e-(t/CR)

通常,应该如何为我们的电路选择一颗合适的电容呢?应基于以下几点考虑:

1)静电容量

2)额定耐压

3)容值误差

4)直流偏压下的电容变化量

5)噪声等级

6)电容的类型

7)电容的规格

那么,是否有捷径可寻呢?其实,电容作为器件的外围元件,几乎每个器件的Datasheet或者Solutions,都比较明确地指明了外围元件的选择参数,也就是说,据此可以获得基本的器件选择要求,然后再进一步完善细化之。

其实选用电容时不仅仅是只看容量和封装,具体要看产品所使用环境,特殊的电路必须用特殊的电容。

下面是chipcapacitor根据电介质的介电常数分类,介电常数直接影响电路的稳定性。

NP0orCH(K

电气性能最稳定,基本上不随温度﹑电压与时间的改变而改变,适用于对稳定性要求高的高频电路。鉴于K值较小,所以在0402、0603、0805封装下很难有大容量的电容。

如0603一般最大的10nF以下。

X7RorYB(2000

电气性能较稳定,在温度、电压与时间改变时性能的变化并不显著(?C

适用于隔直、偶合、旁路与对容量稳定性要求不太高的全频鉴电路。

Y5VorYF(K>15000):

容量稳定性较X7R差(?C

电容的分类方式及种类很多,基于电容的材料特性,其可分为以下几大类:

1)铝电解电容

电容容量范围为0.1?F~22000?F,高脉动电流、长寿命、大容量的不二之选,广泛应用于电源滤波、解藕等场合。

2)薄膜电容

电容容量范围为0.1pF~10?F,具有较小公差、较高容量稳定性及极低的压电效应,因此是X、Y安全电容、EMI/EMC的首选。

3)钽电容

电容容量范围为2.2?F~560?F,低等效串联电阻(ESR)、低等效串联电感(ESL)。脉动吸收、瞬态响应及噪声抑制都优于铝电解电容,是高稳定电源的理想选择。

4)陶瓷电容

电容容量范围为0.5pF~100?F,独特的材料和薄膜技术的结晶,迎合了当今“更轻、更薄、更节能“的设计理念。

5)超级电容

电容容量范围为0.022F~70F,极高的容值,因此又称做“金电容”或者“法拉电容”。

主要特点是:超高容值、良好的充/放电特性,适合于电能存储和电源备份。缺点是耐压较低,工作温度范围较窄。

对于电容而言,小型化和高容量是永恒不变的发展趋势。其中,要数多层陶瓷电容(MLCC)的发展最快。

多层陶瓷电容在便携产品中广泛应用极为广泛,但近年来数字产品的技术进步对其提出了新要求。

而汽车环境的苛刻性对多层陶瓷电容更有特殊的要求:首先是耐高温,放置于其中的多层陶瓷电容必须能满足150℃的工作温度;其次是在电池电路上需要短路失效保护设计。

也就是说,小型化、高速度和高性能、耐高温条件、高可靠性已成为陶瓷电容的关键特性。

陶瓷电容的容量随直流偏置电压的变化而变化。直流偏置电压降低了介电常数,因此需要从材料方面,降低介电常数对电压的依赖,优化直流偏置电压特性。

应用中较为常见的是X7R(X5R)类多层陶瓷电容,它的容量主要集中在1000pF以上,该类电容器主要性能指标是等效串联电阻(ESR),在高波纹电流的电源去耦、滤波及低频信号耦合电路的低功耗表现比较突出。

另一类多层陶瓷电容是C0G类,它的容量多在1000pF以下,该类电容器主要性能指标是损耗角正切值tgδ(DF)。

传统的贵金属电极(NME)的C0G产品DF值范围是(2.0~8.0)×10-4,而技术创新型贱金属电极(BME)的C0G产品DF值范围为(1.0~2.5)×10-4,约是前者的31~50%。

通常的看法是钽电容性能比铝电容好,因为钽电容的介质为阳极氧化后生成的五氧化二钽,它的介电能力(通常用ε表示)比铝电容的三氧化二铝介质要高。

因此在同样容量的情况下,钽电容的体积能比铝电容做得更小。(电解电容的电容量取决于介质的介电能力和体积,在容量一定的情况下,介电能力越高,体积就可以做得越小,反之,体积就需要做得越大)再加上钽的性质比较稳定,所以通常认为钽电容性能比铝电容好。

但这种凭阳极判断电容性能的方法已经过时了,目前决定电解电容性能的关键并不在于阳极,而在于电解质,也就是阴极。

因为不同的阴极和不同的阳极可以组合成不同种类的电解电容,其性能也大不相同。采用同一种阳极的电容由于电解质的不同,性能可以差距很大,总之阳极对于电容性能的影响远远小于阴极。

还有一种看法是认为钽电容比铝电容性能好,主要是由于钽加上二氧化锰阴极助威后才有明显好于铝电解液电容的表现。如果把铝电解液电容的阴极更换为二氧化锰,那么它的性能其实也能提升不少。

可以肯定,ESR是衡量一个电容特性的主要参数之一。但是,选择电容,应避免ESR越低越好,品质越高越好等误区。衡量一个产品,一定要全方位、多角度的去考虑,切不可把电容的作用有意无意的夸大。

普通电解电容的结构是阳极和阴极和电解质,阳极是钝化铝,阴极是纯铝,所以关键是在阳极和电解质。阳极的好坏关系着耐压电介系数等问题。

一般来说,钽电解电容的ESR要比同等容量同等耐压的铝电解电容小很多,高频性能更好。如果那个电容是用在滤波器电路(比如中心为50Hz的带通滤波器)的话,要注意容量变化后对滤波器性能的影响。

嵌入式设计中,要求MCU从耗电量很大的处理密集型工作模式进入耗电量很少的空闲/休眠模式。这些转换很容易引起线路损耗的急剧增加,增加的速率很高,达到20A/ms甚至更快。

通常采用旁路电容来解决稳压器无法适应系统中高速器件引起的负载变化,以确保电源输出的稳定性及良好的瞬态响应。

旁路电容是为本地器件提供能量的储能器件,它能使稳压器的输出均匀化,降低负载需求。就像小型可充电电池一样,旁路电容能够被充电,并向器件进行放电。

为尽量减少阻抗,旁路电容要尽量靠近负载器件的供电电源管脚和地管脚。这能够很好地防止输入值过大而导致的地电位抬高和噪声。地弹是地连接处在通过大电流毛刺时的电压降。

应该明白,大容量和小容量的旁路电容都可能是必需的,有的甚至是多个陶瓷电容和钽电容。这样的组合能够解决上述负载电流或许为阶梯变化所带来的问题,而且还能提供足够的去耦以抑制电压和电流毛刺。

在负载变化非常剧烈的情况下,则需要三个或更多不同容量的电容,以保证在稳压器稳压前提供足够的电流。快速的瞬态过程由高频小容量电容来抑制,中速的瞬态过程由低频大容量来抑制,剩下则交给稳压器完成了。

还应记住一点,稳压器也要求电容尽量靠近电压输出端。

普遍的观点是:一个等效串联电阻(ESR)很小的相对较大容量的外部电容能很好地吸收快速转换时的峰值(纹波)电流。

但是,有时这样的选择容易引起稳压器(特别是线性稳压器LDO)的不稳定,所以必须合理选择小容量和大容量电容的容值。永远记住,稳压器就是一个放大器,放大器可能出现的各种情况它都会出现。

由于DC/DC转换器的响应速度相对较慢,输出去耦电容在负载阶跃的初始阶段起主导的作用,因此需要额外大容量的电容来减缓相对于DC/DC转换器的快速转换,同时用高频电容减缓相对于大电容的快速变换。

通常,大容量电容的等效串联电阻应该选择为合适的值,以便使输出电压的峰值和毛刺在器件的Dasheet规定之内。

高频转换中,小容量电容在0.01?F到0.1?F量级就能很好满足要求。表贴陶瓷电容或者多层陶瓷电容(MLCC)具有更小的ESR。

另外,在这些容值下,它们的体积和BOM成本都比较合理。如果*部低频去耦不充分,则从低频向高频转换时将引起输入电压降低。电压下降过程可能持续数毫秒,时间长短主要取决于稳压器调节增益和提供较大负载电流的时间。

用ESR大的电容并联比用ESR恰好那么低的单个电容当然更具成本效益。然而,这需要你在PCB面积、器件数目与成本之间寻求折衷。

这里的电解电容器主要指铝电解电容器,其基本的电参数包括下列五点:

1)电容值

电解电容器的容值,取决于在交流电压下工作时所呈现的阻抗。因此容值,也就是交流电容值,随着工作频率、电压以及测量方法的变化而变化。

在标准JISC5102规定:铝电解电容的电容量的测量条件是在频率为120Hz,最大交流电压为0.5Vrms,DCbias电压为1.5~2.0V的条件下进行。可以断言,铝电解电容器的容量随频率的增加而减小。

2)损耗角正切值Tanδ

在电容器的等效电路中,串联等效电阻ESR同容抗1/ωC之比称之为Tanδ,这里的ESR是在120Hz下计算获得的值。

显然,Tanδ随着测量频率的增加而变大,随测量温度的下降而增大。

3)阻抗Z

在特定的频率下,阻碍交流电流通过的电阻即为所谓的阻抗(Z)。它与电容等效电路中的电容值、电感值密切相关,且与ESR也有关系。

Z=√[ESR2+(XL-XC)2]

式中,XC=1/ωC=1/2πfC

XL=ωL=2πfL

电容的容抗(XC)在低频率范围内随着频率的增加逐步减小,频率继续增加达到中频范围时电抗(XL)降至ESR的值。

当频率达到高频范围时感抗(XL)变为主导,所以阻抗是随着频率的增加而增加。

4)漏电流

电容器的介质对直流电流具有很大的阻碍作用。然而,由于铝氧化膜介质上浸有电解液,在施加电压时,重新形成的以及修复氧化膜的时候会产生一种很小的称之为漏电流的电流。通常,漏电流会随着温度和电压的升高而增大。

5)纹波电流和纹波电压

在一些资料中将此二者称做“涟波电流”和“涟波电压”,其实就是ripplecurrent,ripplevoltage。含义即为电容器所能耐受纹波电流/电压值。它们和ESR之间的关系密切,可以用下面的式子表示:

Urms=Irms×R

式中,Vrms表示纹波电压

Irms表示纹波电流

R表示电容的ESR

由上可见,当纹波电流增大的时候,即使在ESR保持不变的情况下,涟波电压也会成倍提高。换言之,当纹波电压增大时,纹波电流也随之增大,这也是要求电容具备更低ESR值的原因。

叠加入纹波电流后,由于电容内部的等效串连电阻(ESR)引起发热,从而影响到电容器的使用寿命。一般的,纹波电流与频率成正比,因此低频时纹波电流也比较低。

1)容量(法拉)

英制:C=(0.224×K·A)/TD

公制:C=(0.0884×K·A)/TD

2)电容器中存储的能量

    1/2CV2

3)电容器的线性充电量

  I=C(dV/dt)  Z=√[RS2+(XC–XL)2]  XC=1/(2πfC)  D.F.=tanδ(损耗角)  =ESR/XC  =(2πfC)(ESR)  Q=cotanδ=1/DF  ESR=(DF)XC=DF/2πfC  PowerLoss=(2πfCV2)(DF)  PF=sinδ(lossangle)–cosФ(相位角)  rms=0.707×Vp  KVA=2πfCV2×10-3  T.C.=[(Ct–C25)/C25(Tt–25)]×106  CD=[(C1–C2)/C1]×100  L0/Lt=(Vt/V0)X(Tt/T0)Y  n个电容串联:1/CT=1/C1+1/C2+….+1/Cn  两个电容串联:CT=C1·C2/(C1+C2)  CT=C1+C2+….+Cn  A.R.=%?C/decadeoftime  K=介电常数;  A=面积;  TD=绝缘层厚度;  V=电压;  RS=串联电阻;  f=频率;  L=电感感性系数;  δ=损耗角;  Ф=相位角;  L0=使用寿命;  Lt=试验寿命;  Vt=测试电压;  V0=工作电压;  Tt=测试温度;  T0=工作温度;  X,Y=电压与温度的效应指数。

4)电容的总阻抗(欧姆)

 Z=√[RS2+(XC–XL)2]

5)容性电抗(欧姆)

 XC=1/(2πfC)

6)相位角Ф

理想电容器:超前当前电压90?

理想电感器:滞后当前电压90?

理想电阻器:与当前电压的相位相同

7)耗散系数(%)  D.F.=tanδ(损耗角)  =ESR/XC  =(2πfC)(ESR)

8)品质因素  Q=cotanδ=1/DF

9)等效串联电阻ESR(欧姆)  ESR=(DF)XC=DF/2πfC

10)功率消耗  PowerLoss=(2πfCV2)(DF)

11)功率因数  PF=sinδ(lossangle)–cosФ(相位角)

12)均方根  rms=0.707×Vp

13)千伏安KVA(千瓦)  KVA=2πfCV2×10-3

14)电容器的温度系数  T.C.=[(Ct–C25)/C25(Tt–25)]×106

15)容量损耗(%)  CD=[(C1–C2)/C1]×100

16)陶瓷电容的可靠性  L0/Lt=(Vt/V0)X(Tt/T0)Y

17)串联时的容值  n个电容串联:1/CT=1/C1+1/C2+….+1/Cn  两个电容串联:CT=C1·C2/(C1+C2)

18)并联时的容值  CT=C1+C2+….+Cn

19)重复次数(AgaingRate)  A.R.=%?C/decadeoftime

上述公式中的符号说明如下:

  K=介电常数;

  A=面积;  TD=绝缘层厚度;  V=电压;  RS=串联电阻;  f=频率;  L=电感感性系数;  δ=损耗角;  Ф=相位角;  L0=使用寿命;  Lt=试验寿命;  Vt=测试电压;  V0=工作电压;  Tt=测试温度;  T0=工作温度;  X,Y=电压与温度的效应指数。

在交流电源输入端,一般需要增加三个电容来抑制EMI传导干扰。

交流电源的输入一般可分为三根线:火线(L)/零线(N)/地线(G)。在火线和地线之间及在零线和地线之间并接的电容,一般称之为Y电容。

这两个Y电容连接的位置比较关键,必须需要符合相关安全标准,以防引起电子设备漏电或机壳带电,容易危及人身安全及生命,所以它们都属于安全电容,要求电容值不能偏大,而耐压必须较高。

一般地,工作在亚热带的机器,要求对地漏电电流不能超过0.7mA;工作在温带机器,要求对地漏电电流不能超过0.35mA。因此,Y电容的总容量一般都不能超过4700pF。

特别提示:Y电容为安全电容,必须取得安全检测机构的认证。Y电容的耐压一般都标有安全认证标志和AC250V或AC275V字样,但其真正的直流耐压高达5000V以上。因此,Y电容不能随意使用标称耐压AC250V,或DC400V之类的普通电容来代用。

在火线和零线抑制之间并联的电容,一般称之为X电容。由于这个电容连接的位置也比较关键,同样需要符合安全标准。

因此,X电容同样也属于安全电容之一。X电容的容值允许比Y电容大,但必须在X电容的两端并联一个安全电阻,用于防止电源线拔插时,由于该电容的充放电过程而致电源线插头长时间带电。

安全标准规定,当正在工作之中的机器电源线被拔掉时,在两秒钟内,电源线插头两端带电的电压(或对地电位)必须小于原来额定工作电压的30%。

同理,X电容也是安全电容,必须取得安全检测机构的认证。X电容的耐压一般都标有安全认证标志和AC250V或AC275V字样,但其真正的直流耐压高达2000V以上,使用的时候不要随意使用标称耐压AC250V,或DC400V之类的普通电容来代用。

X电容一般都选用纹波电流比较大的聚脂薄膜类电容,这种电容体积一般都很大,但其允许瞬间充放电的电流也很大,而其内阻相应较小。

普通电容纹波电流的指标都很低,动态内阻较高。用普通电容代替X电容,除了耐压条件不能满足以外,一般纹波电流指标也是难以满足要求的。

实际上,仅仅依赖于Y电容和X电容来完全滤除掉传导干扰信号是不太可能的。因为干扰信号的频谱非常宽,基本覆盖了几十KHz到几百MHz,甚至上千MHz的频率范围。

通常,对低端干扰信号的滤除需要很大容量的滤波电容,但受到安全条件的限制,Y电容和X电容的容量都不能用大;对高端干扰信号的滤除,大容量电容的滤波性能又极差,特别是聚脂薄膜电容的高频性能一般都比较差。

因为它是用卷绕工艺生产的,并且聚脂薄膜介质高频响应特性与陶瓷或云母相比相差很远,一般聚脂薄膜介质都具有吸附效应,它会降低电容器的工作频率,聚脂薄膜电容工作频率范围大约都在1MHz左右,超过1MHz其阻抗将显著增加。

因此,为抑制电子设备产生的传导干扰,除了选用Y电容和X电容之外,还要同时选用多个类型的电感滤波器,组合起来一起滤除干扰。

电感滤波器多属于低通滤波器,但电感滤波器也有很多规格类型,例如有:差模、共模,以及高频、低频等。每种电感主要都是针对某一小段频率的干扰信号滤除而起作用,对其它频率的干扰信号的滤除效果不大。

通常,电感量很大的电感,其线圈匝数较多,那么电感的分布电容也很大。高频干扰信号将通过分布电容旁路掉。而且,导磁率很高的磁芯,其工作频率则较低。

目前,大量使用的电感滤波器磁芯的工作频率大多数都在75MHz以下。对于工作频率要求比较高的场合,必须选用高频环形磁芯,高频环形磁芯导磁率一般都不高,但漏感特别小,比如,非晶合金磁芯,坡莫合金等。

来源:硬件笔记本,版权归原作者所有。如有侵权,请联系我们删除!

往期推荐

【含程序】一步一步教你西门子S7-1200MODBUSRTU通讯温度控制器和变频器

真实案例!接触器居然能引发PLC这样的故障

继电器驱动电路的可靠性设计

电热水壶坏了别扔,它很容易修好的!

掌握这些PLC程序阅读技巧,秒懂PLC程序~

工友们看过来,不掌握这些技术,你只能是勤杂工!

电气工程师标配的PLC指令集鼠标垫,升级版首发!

STEP7Micro/WINSMART如何下载程序?

图解PLC与变频器通讯接线,立马学会用PLC控制变频器!

777个西门子经典编程案例,助力新手快速入门PLC!

电容器型号含义图解

一、概述

在工程技术中,电容器的应用极为广泛。电容器虽然品种规格各异,但就其构成原理来说,电容器都是由间隔以不同介质的两块金属极板组成。当在极板上加以电压后,极板上分别聚集起等量的正、负电荷,并在介质中建立电场而具有电场能量。将电源移去后,电荷可继续聚集在极板上,电场继续存在。所以电容器是一种能储存电荷或者说储存电场能量的部件。电容原件就是反映这种物理现象的电路模型。

电容元件是一种储能元件,同时电容元件也不会释放出多于它吸收或储存的能量,所以它又是一种无源元件。除此之外电容也是一种动态元件和记忆元件。

二、电容特性、单位及单位换算

1、当电压、电流为关联参考方向时

i=c(du/dt)

2、当电压、电流为非关联参考方向时

i=-c(du/dt)

3、电容C、电压U、电荷Q的关系

       C=Q/U

4、电容基本单位:法拉(F)

其他单位:毫法(mF)微法(uF)纳法(nF)皮法(pF)

三、电容的分类

按结构分为三大类:固定电容、可变电容、可调电容

按电解质分类:有机介质电容器、无机介质电容器、电解电容器、电热电容器、空气介质电容器等。

按用途分:高频旁路、低频旁路、滤波、调谐、高频耦合、低频耦合、小型电容器。

按制造材料的不同可分为:瓷介电容、涤纶电容、电解电容、钽电容、聚丙烯电容等。

四、电容型号

国产电容器的型号一般由四部分组成(不适用于压敏、可变、真空电容器)。依次分别代表名称、材料、分类和序号。

第一部分:名称,用字母表示,电容器用C。

第二部分:材料,用字母表示。

第三部分:分类,一般用数字表示,个别用字母表示。

第四部分:序号,用数字表示。

空调配件电容器用字母表示产品的材料:A-钽电解、B-聚苯乙烯等非极性薄膜、C-高频陶瓷、D-铝电解、E-其它材料电解、G-合金电解、H-复合介质、I-玻璃釉、J-金属化纸、L-涤纶等极性有机薄膜、N-铌电解、O-玻璃膜、Q-漆膜、T-低频陶瓷、V-云母纸、Y-云母、Z-纸介

容量标示

1.直标法

用数字和单位符号直接标出。如1uF表示1微法,有些电容用“R”表示小数点,如R56表示0.56微法。

2.文字符号法

用数字和文字符号有规律的组合来表示容量。如p10表示0.1pF、1p0表示1pF、6P8表示6.8pF、2u2表示2.2uF.

3.色标法

用色环或色点表示电容器的主要参数。电容器的色标法与电阻相同。

电容器偏差标志符号:+100%-0--H、+100%-10%--R、+50%-10%--T、+30%-10%--Q、+50%-20%--S、+80%-20%--Z

4.数学计数法:数学计数法一般是三位数字,第一位和第二位数字为有效数字,第三位数字为倍数。标值272,容量就是:27X10^2=2700pf。如果标值473,即为47X10^3=47000pf(后面的2、3,都表示10的多少次方)。又如:332=33X10^2=3300pf。电容器如何命名 各国电容器的型号命名都很不统一,国产电容器的型号一般有四部分组成(不适用于压敏电容器、可变电容器和真空电容器)依次分别代表名称、材料、分类和序号。

第一部分为名称,用

字母C表示

第二部分为材料,

用字母表示

第三部分为分类,用数字表示,

也有个别用字母表示的

第四部分为符号,用数字表示,

以区别电容器的外形尺寸及性能指标

字母及含义

数字或字母

含义

瓷介电容

云母电容

有机电容

电解电容

A—钽电解

1

圆形

非密封

非密封

箔式

B—聚苯乙烯等

非极性薄膜

2

管形

非密封

非密封

箔式

3

叠片

密封

密封

烧结粉固体

C—高频陶瓷

4

独石

密封

密封

烧结粉固体

D—铝电解

5

穿心

?

穿心

?

E—其他材料电解

6

支柱等

?

?

?

G—合金电解

?

?

?

?

?

H—复合介质

7

?

?

?

无极性

I—玻璃釉

8

高压

高压

高压

?

J—金属化纸介

9

?

?

特殊

特殊

L—涤纶等极性有机薄膜

G

高功率

T

叠片式

N—铌电解

W

微调

O—玻璃膜

Q—漆膜

J

金属化纸介

T—低频陶瓷

V—云母纸

Y

高压

Y—云母

Z—纸介

五、电容在电路的作用

耦合:用在耦合电路中的电容称为耦合电容,在阻容耦合放大器和其他电容耦合电路中大量使用这种电容电路,起隔直流通交流作用。

滤波:用在滤波电路中的电容器称为滤波电容,在电源滤波和各种滤波器电路中使用这种电容电路,滤波电容将一定频段内的信号从总信号中去除。

退耦:用在退耦电路中的电容器称为退耦电容,在多级放大器的直流电压供给电路中使用这种电容电路,退耦电容消除每级放大器之间的有害低频交连。

高频消振:用在高频消振电路中的电容称为高频消振电容,在音频负反馈放大器中,为了消振可能出现的高频自激,采用这种电容电路,以消除放大器可能出现的高频啸叫。

谐振:用在LC谐振电路中的电容器称为谐振电容,LC并联和串联谐振电路中都需这种电容电路。

旁路:用在旁路电路中的电容器称为旁路电容,电路中如果需要从信号中去掉某一频段的信号,可以使用旁路电容电路,根据所去掉信号频率不同,有全频域(所有交流信号)旁路电容电路和高频旁路电容电路。

中和:用在中和电路中的电容器称为中和电容。在收音机高频和中频放大器,电视机高频放大器中,采用这种中和电容电路,以消除自激。

定时:用在定时电路中的电容器称为定时电容。在需要通过电容充电、放电进行时间控制的电路中使用定时电容电路,电容起控制时间常数大小的作用。

积分:用在积分电路中的电容器称为积分电容。在电势场扫描的同步分离电路中,采用这种积分电容电路,可以从场复合同步信号中取出场同步信号。

微分:用在微分电路中的电容器称为微分电容。在触发器电路中为了得到尖顶触发信号,采用这种微分电容电路,以从各类(主要是矩形脉冲)信号中得到尖顶脉冲触发信号。

补偿:用在补偿电路中的电容器称为补偿电容,在卡座的低音补偿电路中,使用这种低频补偿电容电路,以提升放音信号中的低频信号,此外,还有高频补偿电容电路。

自举:用在自举电路中的电容器称为自举电容,常用的OTL功率放大器输出级电路采用这种自举电容电路,以通过正反馈的方式少量提升信号的正半周幅度。

分频:在分频电路中的电容器称为分频电容,在音箱的扬声器分频电路中,使用分频电容电路,以使高频扬声器工作在高频段,中频扬声器工作在中频段,低频扬声器工作在低频段。

负载电容:是指与石英晶体谐振器一起决定负载谐振频率的有效外界电容。负载电容常用的标准值有16pF、20pF、30pF、50pF和100pF。负载电容可以根据具体情况作适当的调整,通过调整一般可以将谐振器的工作频率调到标称值。

今天就简单介绍到这里了,今天小编还会继续整理电容在电路中的具体应用实例,大家一起来学习,一起来涨知识吧。

电容器型号说明

有源电力滤波器,一般是并联在含谐波负载的低压配电系统中,能够对动态变化的谐波电流进行快速实时的跟踪和补偿。有源电力滤波器通过CT采集系统谐波电流,经控制器快速计算并提取各次谐波电流的含量,产生谐波电流指令,通过功率执行器件产生与谐波电流幅值相等方向相反的补偿电流,并注入电力系统中,从而抵消非线性负载所产生的谐波电流。

谐波电流的计算方式

有源滤波工作的基本原理  接线示意图

有源电力滤波器并联在电网中,通过外部CT实时检测负载电流并通过DSP计算,提取负载的谐波分量,采用PWM变流技术控制IGBT,使内部的变流装置逆变出一个和负载谐波电流大小相等、方向相反的电流注入到电网中,从而实现滤除谐波的功能。

有源滤波器的型号含义 主要技术参数  产品尺寸 产品选型  应用方案图 安装示意图

电力系统中,普遍存在功率因数低、电压质量差、电能损耗严重等无功问题。在化工厂电力系统中,非线性负荷应用广泛,因此其电网中存在谐波污染。而电网谐波的存在,会影响电力电容器的运行,甚至会出现谐波放大、并联谐振等情况。在这种情况下,建议将传统的电力电容器,更换为滤波型电容器;同时建议使用滤波型电容器、APF有源滤波器等装置治理谐波。如果担心电容器爆炸的话,还可以使用防爆型电容器进行无功补偿。作为无功补偿装置的核心元器件,电力电容器在无功补偿过程中起到了重要作用。不过不同电力电容器内部,会选用不同类型的浸渍介质。那么电力电容器内部浸渍介质有哪些?这些浸渍介质的特性又如何呢?这些电力电容器结构是怎么样的呢?在电力电容器中,电容元件、浸渍介质和电容器外壳,都是十分重要的组成部分。

电容元件:电容元件,是电力电容器的基本电容单元。电容元件通常是由电介质和被它隔开的电极所构成的部件。若干个电容元件并联和串联起来,会组成电容器芯子。在电力电容器内部,每个电容元件上都会有熔丝,起到短路保护的作用。对于电力电容器厂家来说,电容元件的质量直接决定了电力电容器的性能和质量。

浸渍介质:电力电容器的浸渍介质,通常是指电容器的填充物。在电力电容器中,浸渍介质可以提高电容元件的介质耐压强度,改善*部放电特性和散热效果。目前电力电容器厂家使用的浸渍介质有绝缘油、环氧树脂、石蜡、惰性气体等等。浸渍介质=填充物。在大多数情况下,电力电容器的浸渍介质,就是该电容器的填充物。不同类型的电容器,其填充物可以分为绝缘油、非液态绝缘物两大类型。市面上的油浸式电容器,其填充物主要是植物油、矿物油等绝缘油。油浸式电容器的散热效果好、性能稳定;但是对密封性要求高,否则有渗油、漏油风险。市面上的干式电容器,主要有固态填充物、气态填充物两种类型。其中固态填充物如微晶石蜡、蛭石、环氧树脂等绝缘物;气态填充物主要是惰性气体。值得注意的是:以微晶石蜡为填充物的电容器,应避免高温运行环境。因为微晶石蜡在高温下为液态,存在泄漏风险;以惰性气体为填充物的电容器,可能出现闪络放电现象,其金属化膜应加厚处理。植物油、矿物油、微晶石蜡、环氧树脂、惰性气体等都是常见的填充物。

电容器外壳:在电力电容器中,电容器外壳材料有很多。市面上有一种无压槽一体化铝制电容器外壳,这种电容器外壳易散热、耐腐蚀,且可以杜绝压槽处泄漏的风险。

电力电容器型号含义

低压电力电容器额定电压的选择

额定电压的选择。在电力电容器运行过程中,额定电压是非常重要的参数之一。合理选择额定电压,可以保障电容器长期稳定运行。如果额定电压过低,电容器会长期过电压运行,从而鼓包、击穿放电、温升异常等问题。如果额定电压过高的话,电力电容器的利用率会很低。

民用建筑电气设计中低压电力电容器的选择:当电抗率为7%的电抗器匹配时,电容器的额定电压宜为480V。当电抗率为14%的电抗器匹配时,电容宜为525V。原因如下:

低压电力电容器分补和共补接线图

接线示意图示例一:

接线示意图示例二:

电容器标号

ID:BianDianJiShu

导读

    电力电容器,用于电力系统和电工设备的电容器。任意两块金属导体,中间用绝缘介质隔开,即构成一个电容器。电容器电容的大小,由其几何尺寸和两极板间绝缘介质的特性来决定。当电容器在交流电压下使用时,常以其无功功率表示电容器的容量,单位为乏或千乏。本期专题将详细介绍电力电容器的分类、原理、安装及运行维护等问题。

并联电容器是一种无功补偿设备,并联在线路上,其主要作用是补偿系统的无功功率,提高功率因数,从而降低电能损耗、提高电压质量和设备利用率。

串联电容器主要用于补偿电力系统的电抗,常用于高压系统。

电力电容器按安装方式可分为户内式和户外式两种;按其运行的额定电压可分为低压和高压两类;按其相数可分为单相和三相两种,除低压并联电容器外,其余均为单相;按外壳材料可分为金属外壳、瓷绝缘外壳、胶木筒外壳等。

按用途又可分为以下8种:

1)并联电容器。原称移相电容器。主要用于补偿电力系统感性负荷的无功功率,以提高功率因数,改善电压质量,降低线路损耗。

2)串联电容器。串联于工频高压输、配电线路中,用以补偿线路的分布感抗,提高系统的静、动态稳定性,改善线路的电压质量,加长送电距离和增大输送能力。

3)耦合电容器。主要用于高压电力线路的高频通信、测量、控制、保护以及在抽取电能的装置中作部件用。

4)断路器电容器。原称均压电容器。并联在超高压断路器断口上起均压作用,使各断口间的电压在分断过程中和断开时均匀,并可改善断路器的灭弧特性,提高分断能力。

5)电热电容器。用于频率为40~24000赫的电热设备系统中,以提高功率因数,改善回路的电压或频率等特性。

6)脉冲电容器。主要起贮能作用,用作冲击电压发生器、冲击电流发生器、断路器试验用振荡回路等基本贮能元件。

7)直流和滤波电容器。用于高压直流装置和高压整流滤波装置中。

8)标准电容器。用于工频高压测量介质损耗回路中,作为标准电容或用作测量高压的电容分压装置。

电力电容器的基本结构包括:电容元件、浸渍剂、紧固件、引线、外壳和套管。结构图如图1所示。

            图1  补偿电容器结构图

额定电压在1kV以下的称为低压电容器,1kV以上的称为高压电容器,都做成三相、三角形连接线,内部元件并联,每个并联元件都有单独的熔丝;高压电容器一般都做成单相,内部元件并联。外壳用密封钢板焊接而成,芯子由电容元件串并联组成,电容元件用铝箔作电极,用复合薄膜绝缘。电容器内衣绝缘油(矿物油或十二烷基苯等)作浸渍介质。

(1)电容元件

用一定厚度和层数的固体介质与铝箔电极卷制而成。若干个电容元件并联和串联起来,组成电容器芯子。在电压为10kV及以下的高压电容器内,每个电容元件上都串有一熔丝,作为电容器的内部短路保护。当某个元件击穿时,其他完好元件即对其放电,使熔丝在毫秒级的时间内迅速熔断,切除故障元件,从而使电容器能继续正常工作。电容元件的结构如图2所示。

图2  电容元件结构

(2)浸渍剂

电容器芯子一般放于浸渍剂中,以提高电容元件的介质耐压强度,改善*部放电特性和散热条件。浸渍剂一般有矿物油、氯化联苯、SF6气体等。

(3)外壳和套管

外壳一般采用薄钢板焊接而成,表面涂阻燃漆,壳盖上焊有出线套管,箱壁侧面焊有吊攀、接地螺栓等。大容量集合式电容器的箱盖上还装有油枕或金属膨胀器及压力释放阀,箱壁侧面装有片状散热器、压力式温控装置等。接线端子从出线瓷套管中引出。

电容器的型号含义如下图所示。

(1)串联电容器的作用 

1)提高线路末端电压。串接在线路中的电容器,利用其容抗xc补偿线路的感抗xl,使线路的电压降落减少,从而提高线路末端(受电端)的电压,一般可将线路末端电压最大可提高10%~20%。

2)降低受电端电压波动。当线路受电端接有变化很大的冲击负荷(如电弧炉、电焊机、电气轨道等)时,串联电容器能消除电压的剧烈波动。这是因为串联电容器在线路中对电压降落的补偿作用是随通过电容器的负荷而变化的,具有随负荷的变化而瞬时调节的性能,能自动维持负荷端(受电端)的电压值。

3)提高线路输电能力。由于线路串入了电容器的补偿电抗xc,线路的电压降落和功率损耗减少,相应地提高了线路的输送容量。

4)改善了系统潮流分布。在闭合网络中的某些线路上串接一些电容器,部分地改变了线路电抗,使电流按指定的线路流动,以达到功率经济分布的目的。

5)提高系统的稳定性。线路串入电容器后,提高了线路的输电能力,这本身就提高了系统的静稳定。当线路故障被部分切除时(如双回路被切除一回、但回路单相接地切除一相),系统等效电抗急剧增加,此时,将串联电容器进行强行补偿,即短时强行改变电容器串、并联数量,临时增加容抗xc,使系统总的等效电抗减少,提高了输送的极限功率(Pmax=U1U2/xl-xc),从而提高系统的动稳定。

(2)并联电容器的作用

并联电容器并联在系统的母线上,类似于系统母线上的一个容性负荷,它吸收系统的容性无功功率,这就相当于并联电容器向系统发出感性无功。因此,并联电容器能向系统提供感性无功功率,系统运行的功率因数,提高受电端母线的电压水平,同时,它减少了线路上感性无功的输送,减少了电压和功率损耗,因而提高了线路的输电能力。

安装补偿电容器的环境要求如下:

1)电容器应安装在无腐蚀性气体、无蒸汽,没有剧烈震动、冲击、爆炸、易燃等危险的场所。电容器的防火等级不低于二级。

2)装于户外的电容器应防止日光直接照射。

3)电容器室的环境温度应满足制造厂家规定的要求,一般规定为40℃。

4)电容器室装设通风机时,出风口应安装在电容器组的上端。进、排风机宜在对角线位置安装。

5)电容器室可采用天然采光,也可用人工照明,不需要装设采暖装置。

6)高压电容器室的门应向外开。

安装电容器的技术要求如下:

1)为了节省安装面积,高压电容器可以分层安装于铁架上,但垂直放置层数应不多于三层,层与层之间不得装设水平层间隔板,以保证散热良好。上、中、下三层电容器的安装位置要一致,名牌向外。

2)安装高压电容器的铁架成一排或两排布置,排与排之间应留有巡视检查的走道,走道宽度应不小于1.5m.

3)高压电容器组的铁架必须设置铁丝网遮拦,遮拦的网孔3~4cm2为宜。

4)高压电容器外壳之间的距离,一般不应小于10cm;低压电容器外壳之间的距离应不小于50mm。

5)高压电容器室内,上下层之间的净距不应小于0.2m;下层电容器底部与地面的距离应不小于0.3m。

6)每台电容器与母线相连的接线应采用单独的软线,不要采用硬母线连接的方式,以免安装或运行过程中对瓷套管产生应力造成漏油或损坏。

7)安装时,电气回路和接地部分的接触面要良好。因为电容器回路中的任何不良接触,均可能产生高频振荡电弧,造成电容器的工作电场强度增高和发热损坏。

8)较低电压等级的电容器经串联后运行于较高电压等级网络中时,其各台的外壳对地之间,应通过加装相当于运行电压等级的绝缘子等措施,使之可靠绝缘。

9)电容器经星形连接后,用于高一级额定电压,且系中性点不接地时,电容器的外壳应对地绝缘。

10)电容器安装之前,要分配一次电容量,使其相间平衡,偏差不超过总容量的5%。当装有继电保护装置时还应满足运行时平衡电流误差不超过继电保护动作电流的要求。

11)对个别补偿电容器的接线应做到:对直接启动或经变阻器启动的感应电动机,其提高功率因数的电容可以直接与电动机的出线端子相连接,两者之间不要装设开关设备或熔断器;对采用星—三角启动器启动的感应式电动机,最好采用三台单相电容器,每台电容器直接并联在每相绕组的两个端子上,使电容器的接线总是和绕组的接法相一致。

12)对分组补偿低压电容器,应该连接在低压分组母线电源开关的外侧,以防止分组母线开关断开时产生的自激磁现象。

13)集中补偿的低压电容器组,应专设开关并装在线路总开关的外侧,而不要装在低压母线上。

(1)电容器的安全运行

电容器应在额定电压下运行。如暂时不可能,可允许在超过额定电压5%的范围内运行;当超过额定电压1.1倍时,只允许短期运行。但长时间出线过电压情况时,应设法消除。

电容器应维持在三相平衡的额定电流下进行工作。如暂时不可能,不允许在超过1.3倍额定电流下长期工作,以确保电容器的使用寿命。

装置电容器组地点的环境温度不得超过40℃,24h内平均温度不得超过30℃,一年内平均温度不得超过20℃。电容器外壳温度不宜超过60℃。如发现存在上述现象时,应采用人工冷却,必要时将电容器组与网路断开。

(2)电容器相关参数的监控

1)温度的监视。无厂家规定时,电容器的温度一般应为-40℃~40℃,在电容器外壳粘贴示温蜡片。运行中电容器温度异常升高的原因包括:运行电压过高(介损大);谐波的影响(容抗小电流大);合闸涌流(频繁投切);散热条件恶化。

2)电压的监视。应在额定电压下运行,亦允许在1.05倍额定电压运行,在1.1倍额定电压运行不超过4小时。

3)电流的监视。应在额定电流下运行,亦允许在1.3倍额定电流下运行,电容器组三相电流的差别不应超过±5%。

(3)电容器的投入退出

当功率因数低于0.85,电压偏低时应投入;当功率因数趋近于1且有超前趋势,电压偏高时应退出。

发生下列故障之一时,应紧急退出:①连接点严重过热甚至熔化;②瓷套管闪络放电;③外壳膨胀变形;④电容器组或放电装置声音异常;⑤电容器冒烟、起火或爆炸。

电力电容器组在接通前应用兆欧表检查放电网络。

接通和断开电容器组时,必须考虑以下几点:

1)当汇流排(母线)上的电压超过1.1倍额定电压最大允许值时,禁止将电容器组接入电网。

2)在电容器组自电网断开后1分钟内不得重新接入,但自动重复接入情况除外。

3)在接通和断开电容器组时,要选用不能产生危险过电压的断路器,并且断路器的额定电流不应低于1.3倍电容器组的额定电流。

(1)操作电容器时的注意事项

1)正常情况下,全站停电操作,应先拉开电容器断路器,后拉开各出线断路器;恢复送电时,顺序相反。

2)事故情况下,全站停电后,必须将电容器的断路器拉开。

3)并联电容器组断路器跳闸后,不准强送电;熔丝熔断后,未查明原因前,不准更换熔丝送电。

4)并联电容器组,禁止带电荷合闸;再次合闸时,必须在分闸3分钟后进行。

5)装有并联电阻的断路器不准使用手动操作机构进行合闸。

6)高压电容器组外露的导电部分,应有网状遮拦,进行外部巡视时,禁止将运行中电容器组的遮拦打开。

7)任何额定电压的电容器组,禁止带电荷合闸,每次断开后重新合闸,须在短路三分钟后(即经过放电后少许时间)方可进行。

8)更换电容器的保险丝,应在电容器没有电压时进行。故进行前,应对电容器放电。

(2)故障处理

1)当电容器喷油、爆炸着火时,应立即断开电源,并用砂子或干式灭火器灭火。

2)电容器的断路器跳闸,而熔丝未熔断。应对电容器放电3分钟后,再检查断路器、电流互感器、电力电缆及电容器外部情况。若未发现异常,则可能是由于外部故障或电压波动所致,可以试投,否则应进一步对保护做全面的通电试验。

3)当电容器的熔丝熔断后,应向值班调度员汇报,取得同意后,再切断电源并对电容器放电后,先进行外部检查,如套管的外部有无闪络痕迹、外壳是否变形、漏油及接地装置有无短路等,然后用摇表摇测极间及极对地的绝缘电阻值。如未发现故障迹象,可换熔丝继续投入运行。如经送电后熔丝扔熔断,则应退出故障电容器。

4)处理故障电容器应先断开电容器的断路器,拉开断路器两侧的隔离开关。由于电容器组经放电电阻放电后,可能部分残存电荷一时放不完,仍应进行一次人工放电。放电时先将接地线接地端接好,再用接地棒多次对电容器放电,直至无放电火花及放电声为止。尽管如此,在接触故障电容器前,还应戴上绝缘手套,先用短路线将故障电容器两极短接,然后手动拆卸和更换。

(3)电容器日常巡视的主要项目

1)监视运行电压、电流、温度、

2)外壳有无膨胀、渗漏油,附属设备是否完后。

3)内部有无异音。

4)熔丝是否熔断,放电装置是否良好。

5)各处接点有无发热及小火花放电。

6)套管是否清洁完整,有无裂纹、闪络现象。

7)引线连接处有无松动、脱落或断线,母线各处有无烧伤、过热现象。

8)室内通风、外壳接地线是否良好。

9)电容器组继电保护运行情况。

本文来自:「 网络 」版权归原作者所有,只供变电专业技术人员交流和学习,无任何商业用途,如有侵权请联系我们删除。

关于电力知识你还有什么想了解的,欢迎评论区告诉我们哦~~

点亮在看,你最好看!

电容器型号解读

二、电容的单位  电容的基本单位是:F(法),此外还有μF(微法)、pF(皮法),另外还有一个用的比较少的单位,那就是:nF(),由于电容F的容量非常大,所以我们看到的一般都是μF、nF、pF的单位,而不是F的单位。他们之间的具体换算如下:1F=1000000μF1μF=1000nF=1000000pF

三、电容的计算方法

1.电容的计算公式

2.电容的阻抗的计算

交流电是能够通过电容的,但是电容对交流电仍然有阻碍作用。电容对交流电的阻碍作用叫做容抗。电容量大,交流电容易通过电容,说明电容量大,电容的阻碍作用小;交流电的频率高,交流电也容易通过电容,说明频率高,电容的阻碍作用也小。实验证明,容抗和电容成反比,和频率也成反比。如果容抗用XC表示,电容用C表示,频率用f表示,那么     容抗的单位是欧。知道了交流电的频率f和电容C

四、电容的型号命名:

1) 各国电容器的型号命名很不统一,国产电容器的命名由四部分组成:第一部分:用字母表示名称,电容器为C。第二部分:用字母表示材料。第三部分:用数字表示分类。第四部分:用数字表示序号。

2) 电容的标志方法:(1)直标法:用字母和数字把型号、规格直接标在外壳上。(2)文字符号法:用数字、文字符号有规律的组合来表示容量。文字符号表示其电容量的单位:P、N、u、m、F等。和电阻的表示方法相同。标称允许偏差也和电阻的表示方法相同。小于10pF的电容,其允许偏差用字母代替:B——±0.1pF,C——±0.25pF,D——±0.5pF,F——±1pF。(3)色标法:和电阻的表示方法相同,单位一般为pF。小型电解电容器的耐压也有用色标法的,位置靠近正极引出线的根部,所表示的意义如下表所示:颜色黑棕红橙黄绿蓝紫灰耐压4V6.3V10V16V25V32V40V50V63V

3) 安规电容是指用于这样的场合,即电容器失效后,不会导致电击,不危及有身安全。

安规电容安全等级,应用中允许的峰值脉冲电压,过电压等级(IEC664)

X1    >2.5KV≤4.0KV    Ⅲ

X2        ≤2.5KV    Ⅱ

X3        ≤1.2KV    --

 安规电容的等级制      绝缘类型       额定电压范围

  Y1         双重绝缘或加强绝缘       ≥250V

Y2         基本绝缘或附加绝缘     ≥150≤250V

Y3         基本绝缘或附加绝缘     ≥150≤250V

Y4         基本绝缘或附加绝缘       

Y电容的电容量必须受到限制,从而达到控制在额定频率及额定电压的作用下,流过它的漏电流的大小和对系统EMC性能影响的目的.GJB151规定Y电容的容量应不大于0.1F.Y电容除符合相应的电网电压耐压外,还要求这种电容器在电气和机械性能方面有足够的安规电容的参数选择.

(4)进口电容器的标志方法:进口电容器一般有6项组成。第一项:用字母表示类别:第二项:用两位数字表示其外形、结构、封装方式、引线开始及与轴的关系。第三项:温度补偿型电容器的温度特性,有用字母的,也有用颜色的,其意义如下表所示:序号字母颜色温度系数允许偏差字母颜色温度系数允许偏差1A金+100R黄-2202B灰+30S绿-3303C黑0T蓝-4704G±30U紫-7505H棕-30±60V-10006J±120W-15007K±250X-22008L红-80±500Y-33009M±1000Z-470010N±2500SL+350~-100011P橙-150YN-800~-5800备注:温度系数的单位10e-6/℃;允许偏差是%。第四项:用数字和字母表示耐压,字母代表有效数值,数字代表被乘数的10的幂。第五项:标称容量,用三位数字表示,前两位为有效数值,第三为是10的幂。当有小数时,用R或P表示。普通电容器的单位是pF,电解电容器的单位是uF。第六项:允许偏差。用一个字母表示,意义和国产电容器的相同。也有用色标法的,意义和国产电容器的标志方法相同。3.电容的主要特性参数:(1)容量与误差:实际电容量和标称电容量允许的最大偏差范围。一般分为3级:I级±5%,II级±10%,III级±20%。在有些情况下,还有0级,误差为±20%。精密电容器的允许误差较小,而电解电容器的误差较大,它们采用不同的误差等级。常用的电容器其精度等级和电阻器的表示方法相同。用字母表示:

符  号

B

C

D

F

G

J

K

L

M

N

Z

允许误差

±0.1%

±0.25%

±0.5%

±1%

±2%

±5%

±10%

±15%

±20%

±30%

+80%

-20%

(2)额定工作电压:电容器在电路中能够长期稳定、可靠工作,所承受的最大直流电压,又称耐压。对于结构、介质、容量相同的器件,耐压越高,体积越大。(3)温度系数:在一定温度范围内,温度每变化1℃,电容量的相对变化值。温度系数越小越好。(4)绝缘电阻:用来表明漏电大小的。一般小容量的电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆。电解电容的绝缘电阻一般较小。相对而言,绝缘电阻越大越好,漏电也小。(5)损耗:在电场的作用下,电容器在单位时间内发热而消耗的能量。这些损耗主要来自介质损耗和金属损耗。通常用损耗角正切值来表示。(6)频率特性:电容器的电参数随电场频率而变化的性质。在高频条件下工作的电容器,由于介电常数在高频时比低频时小,电容量也相应减小。损耗也随频率的升高而增加。另外,在高频工作时,电容器的分布参数,如极片电阻、引线和极片间的电阻、极片的自身电感、引线电感等,都会影响电容器的性能。所有这些,使得电容器的使用频率受到限制。不同品种的电容器,最高使用频率不同。小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ。

五、电容的种类

由于绝缘材料的不同,所构成的电容器的种类也有所不同:按结构可分为:固定电容,可变电容,微调电容。按介质材料可分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。按极性分为:有极性电容和无极性电容。我们最常见到的就是电解电容。

从原理上分为:无极性可变电容、无极性固定电容、有极性电容等。

从材料上可以分为:CBB电容(聚乙烯),涤纶电容、瓷片电容、云母电容、独石电容、电解电容、钽电容等。下面是各种电容的优缺点:无感CBB电容2层聚丙乙烯塑料和2层金属箔交替夹杂然后捆绑而成。无感,高频特性好,体积较小不适合做大容量,价格比较高,耐热性能较差。

CBB电容2层聚乙烯塑料和2层金属箔交替夹杂然后捆绑而成。有感,其他同上。

基层电容铁电陶瓷电容容量较大,但是损耗和温度系数较大,适宜用于低频电路。薄瓷片两面渡金属膜银而成。体积小,耐压高,价格低,频率高(有一种是高频电容)易碎!容量低

陶瓷电容

用陶瓷作介质,在陶瓷基体两面喷涂银层,然后烧成银质薄膜做板极制成.

它的特点是体积小,耐热性能好,损耗小,绝缘电阻高,但容量小,适宜用于高频电路

云母电容云母片上镀两层金属薄膜容易生产,技术含量低。体积大,容量小,(几乎没有用了)

独石电容体积比CBB更小,其他同CBB,有感

电解电容两片铝带和两层绝缘膜相互层叠,转捆后浸泡在电解液(含酸性的合成溶液)中。容量大。高频特性不好。

电解电容在电路中的作用:1、滤波作用:在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容.由于大容量的电解电容一般具有一定的电感,对高频及脉冲干扰信号不能有效地滤除,故在其两端并联了一只容量为0.001--0.lpF的电容,以滤除高频及脉冲干扰.2、耦合作用:在低频信号的传递与放大过程中,为防止前后两级电路的静态工作点相互影响,常采用电容藕合.为了防止信号中韵低频分量损失过大,一般总采用容量较大的电解电容

钽电容用金属钽作为正极,在电解质外喷上金属作为负极。稳定性好,容量大,高频特性好。造价高。(一般用于关键地方)

贴片电容

 一NPO电容器(温度补偿贴片单片陶瓷电容器)

NPO是一种最常用的具有温度补偿特性的单片陶瓷电容器。它的填充介质是由铷、钐和一些其它稀有氧化物组成的。NPO电容器是电容量和介质损耗最稳定的电容器之一。在温度从-55℃到+125℃时容量变化为0±30ppm/℃,电容量随频率的变化小于±0.3ΔC。NPO电容的漂移或滞后小于±0.05%,相对大于±2%的薄膜电容来说是可以忽略不计的。其典型的容量相对使用寿命的变化小于±0.1%。NPO电容器随封装形式不同其电容量和介质损耗随频率变化的特性也不同,大封装尺寸的要比小封装尺寸的频率特性好。下表给出了NPO电容器可选取的容量范围。

NPO电容器适合用于振荡器、谐振器的槽路电容,以及高频电路中的耦合电容。

  二X7R电容器(温度稳定型的陶瓷电容器)

  X7R电容器被称为温度稳定型的陶瓷电容器。当温度在-55℃到+125℃时其容量变化为15%,需要注意的是此时电容器容量变化是非线性的。

  X7R电容器的容量在不同的电压和频率条件下是不同的,它也随时间的变化而变化,大约每10年变化1%ΔC,表现为10年变化了约5%。  X7R电容器主要应用于要求不高的工业应用,而且当电压变化时其容量变化是可以接受的条件下。它的主要特点是在相同的体积下电容量可以做的比较大。下表给出了X7R电容器可选取的容量范围。

  三Z5U电容器(“通用”陶瓷电容器)

  Z5U电容器称为”通用”陶瓷单片电容器。这里首先需要考虑的是使用温度范围,对于Z5U电容器主要的是它的小尺寸和低成本。对于上述三种陶瓷单片电容起来说在相同的体积下Z5U电容器有最大的电容量。但它的电容量受环境和工作条件影响较大,它的老化率最大可达每10年下降5%。

  尽管它的容量不稳定,由于它具有小体积、等效串联电感(ESL)和等效串联电阻(ESR)低、良好的频率响应,使其具有广泛的应用范围。尤其是在退耦电路的应用中。下表给出了Z5U电容器的取值范围。

  Z5U电容器的其他技术指标如下:

工作温度范围+10℃---+85℃

温度特性+22%-----56%

介质损耗最大4%

  四Y5V电容器(有一定温度限制的通用电容器)

  Y5V电容器是一种有一定温度限制的通用电容器,在-30℃到85℃范围内其容量变化可达+22%到-82%。

Y5V的高介电常数允许在较小的物理尺寸下制造出高达4.7μF电容器。

Y5V电容器的取值范围如下表所示

  Y5V电容器的其他技术指标如下:  工作温度范围-30℃---+85℃  温度特性+22%-----82%  介质损耗最大5%

不同的电容在电路中各种作用的知识

A、电压源正负端接了一个电容(与电路并联),用于整流电路时,具有很好的滤波作用,当电压交变时,由于电容的充电作用,两端的电压不能突变,就保证了电压的平稳。

当用于电池电源时,具有交流通路的作用,这样就等于把电池的交流信号短路,避免了由于电池电压下降,电池内阻变大,电路产生寄生震荡。

B、比如说什么样的电路中串或者并个电容可以达到耦合的作用,不放电容和放电容有什么区别?

在交流多级放大电路中,因个级增益及功率不同.各级的直流工作偏值就不同!若级间直接藕合则会使各级工作偏值通混无法正常工作!利用电容的通交隔直特性既解决了级间交流的藕合,又隔绝了级间偏值通混,一举两得!

C、基本放大电路中的两个耦合电容,电容+极和直流+极相接,起到通交隔直的作用,接反的话会怎么样,会不会也起到通交隔直的作用,为什么要那接呀!

接反的话电解电容会漏电,改变了电路的直流工作点,使放大电路异常或不能工作

D、阻容耦合放大电路中,电容的作用是什么??

隔离直流信号,使得相邻放大电路的静态工作点相互独立,互不影响。

E、模拟电路放大器不用耦合电容行么,照样可以放大啊?书上放大器在变压器副线圈和三极管之间加个耦合电容,解释是通交流阻直流,将前一级输出变成下一级输入,使前后级不影响,前一级是交流电,后一级也是交流电,怎么会相互影响啊,我实在想不通加个电容不是多此一举啊

你犯了个错误。前一级确实是交流电,但后一级是交流叠加直流。三极管是需要直流偏置的。如果没有电容隔直,则变压器的线圈会把三极管的直流偏置给旁路掉(因为电感是通直流的)

F、基本放大电路耦合电容,其中耦合电容可以用无极性的吗

在基本放大电路中,耦合电容要视频率而定,当频率较高时,需用无极电容,特点是比较稳定,耐压可以做得比较高,体积相对小,但容量做不大。其最大的用途是可以通过交流电,隔断直流电,广泛用于高频交流通路、旁路、谐振等电路。(简单理解为高频通路)

当频率较低时,无极电容因为容量较低,容抗相对增大,就要用有极性的电解电容了,由于其内部加有电解液,可以把容量做得很大,让低频交流电通过,隔断直流电。但由于内部两极中间是有机介质的,所以耐压受限,多用于低频交流通路、滤波、退耦、旁路等电路。(简单理解为低频通路)

G、请电路高手告知耦合电容起什么作用

在放大电路中,利用耦合电容通交隔直的作用,使高频交流信号可以顺利通过电路,被一级一级地放大,而直流量被阻断在每一级的内部.

H、请问用电池供电的电路中,电容为什么会充放电,起到延时的作用?高手指点谢谢.

电容是聚集电荷的,你可把它想象成个水杯,充放电就是充放水。在充电过程中,电压是慢慢的上升的,放电反之。你只需检测电容两端电压就能实现延时。如充电,开始时,电容两端电压为零,随着充电时间延长,电压逐渐上升到你设定的电压就能控制电路的开关。当然,也可反过来利用放电。延时时间与电容容量、电容漏电,充电电阻,及电压有关,有时还要把负载电阻考虑进去。

I、阻容耦合,是利用电容的通交隔直特性,防止前、后级之间的直流成分引起串扰,造成工作点的不稳定。

J、阻容耦合放大电路只能放大交流信号,不能放大直流信号,对还是错

对.电容是一种隔直流阻交流的电子元件.所以阻容耦合放大电路只能放大交流信号.放大直流信号用直接耦合放大电路.

K、放大电路中耦合电容和旁路电容如何判别?

耦合电容负极不接地,而是接下一级的输入端,旁路电容负极接地。

L、运放的多级交流放大电路如何选用电容耦合?

其实很间单,一般瓷片电容就可搞定!要效果好的话可选用钽电容。按照你输入信号的频率范围高频的可选用103,104容值的电容,对于较低频率的交流信号可选用22uF左右的电解电容。

M、放大电路采用直接耦合,反馈网络为纯电阻网络,为什么电路只可能产生高频振荡?

振荡来源于闭环的相移达到180度并且此时的环路增益是大于零的。采用纯电阻网络作为反馈网络是一定不会引入相移的,所以呢全部的相移是来自于放大器的开环电路。采用直接耦合的开环放大器在级之间是不会有电容元件引起相移的,那么能够引起相移的便是晶体管或MOS管内部的电容,这些电容都是fF,最大pF级的电容,这些电容与电路等效电阻构成的电路的谐振频率是相当高的。所以放大器采用直接耦合,反馈网络为纯阻网络只可能产生高频振荡。

N、阻容耦合放大电路的频带宽度是指(上限截至频率与下限截至频率之差)阻容耦合放大电路的上限截止频率是指(随着频率升高使放大倍数下降到原来的0.707倍,即-3dB时的频率)阻容耦合放大电路的下限截止频率是指(随着频率降低使放大倍数下降到原来的0.707倍,即-3dB时的频率)。阻容耦合放大电路的上限截止频率主要受(晶体管结电容,电路的分布电容)的影响,阻容耦合放大电路的下限截止频率主要受(隔直电容与旁路)电容的影响

O、运放的多级交流放大电路如何选用电容耦合?

其实很间单,一般瓷片电容就可搞定!要效果好的话可选用钽电容。按照你输入信号的频率范围高频的可选用103,104容值的电容,对于较低频率的交流信号可选用22uF左右的电解电容。

P、在多级放大电路里面电解电容是怎么耦合到下一级的呢在电容里面的特性不是隔直的吗,它是怎么传送过去的呢。还有为电容要通过三极管的集电极来接呢,发射机为什么不可以呢?电解电容都是在交流放大器里面工作,而交流的电流方向呈周期性变化,三极管能正常导通吗。还有NPN型的三极管的集电极不是从C到B的吗,那它的电流是怎么通过流到下一级的三极管的基极的呢

用电解电容做耦合的放大器,都是交流放大器。电解电容在这里作“通交隔直”用。由三极管的哪个极输出,是电路形式的问题,两者都有。

Q、1.怎样估算第一级放大器的输出电阻和第二级放大器的输入电阻,2当信号源的幅度过大,在两级放大器的输出端分别会出现什么情况3.用手在放大器的输入端晃动,观察放大器的输出端,看是否出现了什么?原因是什么?

1.第二级放大器的输入电阻就是第一级放大器的输出电阻。2失真。3杂波,人体感应

R、电容可以起到耦合作用?比如说什么样的电路中串或者并个电容可以达到耦合的作用,不放电容和放电容有什么区别?

在交流多级放大电路中,因个级增益及功率不同.各级的直流工作偏值就不同!若级间直接藕合则会使各级工作偏值通混无法正常工作!利用电容的通交隔直特性既解决了级间交流的藕合,又隔绝了级间偏值通混,一举两得!

S、怎么利用电容的充放电,理解滤波,去耦,旁路.....电容就是充放电。那怎么利用电容的充放电,去理解滤波,去耦,旁路.....

答:电容隔直流通交流,隔直流好理解,通交流不好理解,只要理解了通交流就理解了滤波、去耦和旁路。

  电容就是充放电,不错。但交流电的方向,正反向交替变化。振幅的大小也做周期性变化。整个变化的图像就是一条正弦曲线。

  电容器接在交流电路中,由于交流电压的周期性变化,它也在周期性的充放电变化。线路中存在充放电电流,这种充放电电流,除相位比电压超前90度外,形状完全和电压一样,这就相当于交流通过了电容器。

  和交流电通过电阻是不同,交流电通过电阻,要在电阻上消耗电能(发热)。而通过电容器只是与电源做能量交换,充电时电源将能量送给电容器,放电时电容器又将电能返还给电源,所以这里的电压乘电流所产生的功率叫无功功率。

  需要明确的是,电容器接在交流电路中,流动的电子(电流)并没有真正的冲过绝缘层,却在电路中产生了电流。这是因为在线路中,反向放电和正向充电是同一个方向,而正向放电和反向充电是同一个方向,就象接力赛跑,一个团队跑完交流电的正半周,另一个团队接过接力棒继续跑完交流电的负半周。

  理解了电容器通交流,那么,交流成份旁路到地,完成滤波也就可以理解了。

T、旁路电容和滤波电容,去耦电容分别怎么用?,可以举一些实例说明

答:这三种叫法的电容,其实都是滤波的,只是应用在不同的电路中,叫法和用法不一样。

  滤波电容,这是我们通常用在电源整流以后的电容,它是把整流电路交流整流成脉动直流,通过充放电加以平滑的电容,这种电容一般都是电解电容,而且容量较大,在微法级。

  旁路电容,是把输入信号中的高频成份加以滤除,主要是用于滤除高频杂波的,通常用瓷质电容、涤纶电容,容量较小,在皮法级。

  去耦电容,是把输出信号的干扰作为滤除对象,去耦电容相当于电池,利用其充放电,使得放大后的信号不会因电流的突变而受干扰。它的容量根据信号的频率、抑制波纹程度而定。

U、什么是耦合电容,去耦电容,有什么特点和作用

耦合电容是传递交流信号的,接在线路中。去耦电容是将无用交流信号去除的,一段接在线路中、一端接地。

V、关于电容有几作用,在什么情况才电容耦合,在什么情况才电容滤波?

答:电容器在电路里的十八般武艺归根到底就是两个!充电荷!放电荷!

其特性就是通交流!隔直流!电容两端加上交变电压后会随电流交变频率而不断的充放电!此时电路里就有同频率的交变电流通过!这就是电容的通交特性!

在频率合适的情况下电容对电路可视为通路!前级交流输出经电容就可传至后级电路!

而对直流来说它却是隔绝的!因为两端电压充至与电路电压相等时就不会再有充电电流了!

作用于前后级交流信号的传递时就是藕合!

作用于滤除波动成份及无用交流成分时就是滤波!

W、大家都知道,整流电路的电容滤波是利用其充放电;但是有时候滤波是利用电容对不通频率信号的容抗不同,比如旁路电容。所以分析电容滤波时到底用哪个角度分析啊?

其实不论是哪种说法都是一个道理,利用充放电的理论较笼统一些,利用容抗的的理论则更深入一些,电容的作用就是利用了其充放电的特性,看你想滤除什么成份,滤低频用大电容,滤高频用小电容,在理论上低频整流电路中的滤波和高频中的旁路是相同的都是利用了容抗的不同。

X、电容如何实现充放电、整流、滤波的功能

电容的充电,放电,整流和滤波甚至包括它的移相,电抗等功能,都是电容的存储功能在起作用。电容之所以能够存储电荷,是利用了正负电荷之间有较强的互相吸引的特性来实现的。在给电容充电时,人们通过电源将正电荷引入正极板,负电荷引入到电容的负极板。但是正负电荷又到不了一起这是因为有一层绝缘模阻隔着它们。隔模越大越薄引力也就越大。存储的电荷也就越多。正负电荷在十个极板间是吸引住了但是如果你给它提供一个外电路它们就会能过这个外电路互相结合,也就是放电。它们毕竟是一高一低麻。形像来说电容就像一个储水池。它可以形像地说明它的整流波波的作用。

Y、滤波电容充电满了之后然后对后面回路放电然后在充放循环?稳压二极管是击穿稳压还是不击穿稳压

其实你说的很对,它在电路中就是这么一个工作的过程,但是他跟信号的频率有关系,首先看你要把电容放在电路中用着什么,当用作滤波时,它把一定频率信号滤除到地,如芯片电源前端的电容,有的则是去耦,你说的现象就像稳压关前的滤波电容和开关电源输出的滤波电容,

关于稳压管我给你举个例子吧,假如有个5V的稳压管,当电压小与5V,电压就等与它本身的电压,当电压高于5V,稳压管就把电压稳到5V,多余的电压把稳压关击穿通道第上去了

Z、电容的耦合是什么具体意思啊?它和滤波有什么区别吗?

耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。退耦是指对电源采取进一步的滤波措施,去除两级间信号通过电源互相干扰的影响。耦合常数是指耦合电容值与第二级输入阻抗值乘积对应的时间常数。

退耦有三个目的:1.将电源中的高频纹波去除,将多级放大器的高频信号通过电源相互串扰的通路切断;2.大信号工作时,电路对电源需求加大,引起电源波动,通过退耦降低大信号时电源波动对输入级/高电压增益级的影响;3.形成悬浮地或是悬浮电源,在复杂的系统中完成各部分地线或是电源的协调匹

有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个*部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。

Aa、电容的作用是什么?我只知道滤波,就是滤除交流信号,谢谢回答

不只是滤波,全部给你吧:1.电容器主要用于交流电路及脉冲电路中,在直流电路中电容器一般起隔断直流的作用。2.电容既不产生也不消耗能量,是储能元件。3.电容器在电力系统中是提高功率因数的重要器件;在电子电路中是获得振荡、滤波、相移、旁路、耦合等作用的主要元件。4.因为在工业上使用的负载主要是电动机感性负载,所以要并电容这容性负载才能使电网平衡.5.在接地线上,为什么有的也要通过电容后再接地咧?

答:在直流电路中是抗干扰,把干扰脉冲通过电容接地(在这次要作用是隔直——电路中的电位关系);交流电路中也有这样通过电容接地的,一般容量较小,也是抗干扰和电位隔离作用.

电容补尝功