主页 > 型号大全 > 正文

ic型号(IC型号查询)

2024-03-30 14:12:04 来源:阿帮个性网 点击:
文章目录导航:
  1. IC型号是啥意思
  2. IC型号Gs1903与MT16703能兼容吗
  3. IC型号 CH开头是哪家公司的
  4. IC型号HW-101A-FT NHE520-HF-6丝印什么
  5. iC型号板查询网

IC型号是啥意思

集成电路(IC)型号命名方法/规则/标准原部标规定的命名方法XXXXXX电路类型电路系列悔袭和电路规格符号电路封装T:TTL;品种序号码(拼音字母)A:陶瓷扁平;H:HTTL;(三位数字)B:塑料扁平;E:ECL;C:陶瓷双列直插;I:I-L;D:塑料双列直插;P:PMOS;Y:金属圆壳;N:NMOS;F:金属菱形;F:线性放大器;W:集成稳压器;J:接口电路。原国标规定的命名方法CXXXXX中国制造器件类型器件系列和工作温度范围器件封装符号T:TTL;品种代号C:(0-70)℃;W:陶瓷扁平;H:HTTL;(器伍枣件序号)E:(-40~85)℃;B:塑料扁平;E:ECL;R:(-55~85)℃;F:全密封扁平;C:CMOS;M:(-55~125)℃;D:陶瓷双列直插;F:线性放大器;P:塑料双列直插碧橘兄;D:音响、电视电路;J:黑瓷双理直插;W:稳压器;K:金属菱形;J:接口电路;T:金属圆壳;B:非线性电路;M:存储器;U:微机电路;其中,TTL中标准系列为CT1000系列;H系列为CT2000系列;S系列为CT3000系列;LS系列为CT4000系列;原部标规定的命名方法CXXXXX中国国标产品器件类型用***数字和工作温度范围封装T:TTL电路;字母表示器件系C:(0~70)℃F:多层陶瓷扁平;H:HTTL电路;列品种G:(-25~70)℃B:塑料扁平;E:ECL电路;其中TTL分为:L:(-25~85)℃H:黑瓷扁平;C:CMOS电路;54/74XXX;E:(-40~85)℃D:多层陶瓷双列直插;M:存储器;54/74HXXX;R:(-55~85)℃J:黑瓷双列直插;U:微型机电路;54/74LXXX;M:(-55~125)℃P:塑料双列直插;F:线性放大器;54/74SXXX;S:塑料单列直插;W:稳压器;54/74LSXXX;T:金属圆壳;D:音响、电视电路;54/74ASXXX;K:金属菱形;B:非线性电路;54/74ALSXXX;C:陶瓷芯片载体;J:接口电路;54/FXXX。E:塑料芯片载体;AD:A/D转换器;CMOS分为:G:网格针栅阵列;DA:D/A转换器;4000系列;本手册中采用了:SC:通信专用电路;54/74HCXXX;SOIC:小引线封装(泛指);SS:敏感电路;54/74HCTXXX;PCC:塑料芯片载体封装;SW:钟表电路;LCC:陶瓷芯片载体封装;SJ:机电仪电路;W:陶瓷扁平。SF:复印机电路;

IC型号Gs1903与MT16703能兼容吗

IC(集成电路)型号各部分的意义

1、第0部分

c表示中国制造

2、第1部分

T:TTL电路、H:HTL电路、E:ECL电路、C:CMOS电路

M:存储器、µ:微型机电路、F:线性放大器、

W:稳定器、B:非线性电路、J:接口电路、AD:A/D转换器、

DA:D/A转换器、D:音响、电视电路、SC:通信专用电路、

SS:敏感电路、SW:钟表电路

3、第2部分

用数字表示器件的系列代号

4、第3部分

C:0~70℃、G:_25~70℃、L:_24~85℃、E:-40~85℃、

R:_55~85℃、M:_55~125℃

5、第4部分

F:多层陶瓷扁平、B:塑料扁平、H:黑瓷扁平、D:多层陶瓷双列直插、

J:黑瓷双列直插、P:塑料双列直插、S:塑料单列直插、K:金属菱形、

T:金属圆形、C:陶瓷芯片载体、E:塑料芯片载体、G:网络针栅陈列

扩展资料:

IC按用途可分为电视机用集成电路、音响用集成电路、影碟机用集成电路、录像机用集成电路、电脑(微机)用集成电路、电子琴用集成电路、通信用集成电路、照相机用集成电路、遥控集成电路、语言集成电路、报警器用集成电路及各种专用集成电路。

1、电视机用集成电路包括行、场扫描集成电路、中放集成电路、伴音集成电路、彩色解码集成电路、AV/TV转换集成电路、开关电源集成电路、遥控集成电路、丽音解码集成电路、画中画处理集成电路、微处理器(CPU)集成电路、存储器集成电路等。

2、音响用集成电路包括AM/FM高中频电路、立体声解码电路、音频前置放大电路、音频运算放大集成电路、音频功率放大集成电路、环绕声处理集成电路、电平驱动集成电路,电子音量控制集成电路、延时混响集成电路、电子开关集成电路等。

3、影碟机用集成电路有系统控制集成电路、视频编码集成电路、MPEG解码集成电路、音频信号处理集成电路、音响效果集成电路、RF信号处理集成电路、数字信号处理集成电路、伺服集成电路、电动机驱动集成电路等。

4、录像机用集成电路有系统控制集成电路、伺服集成电路、驱动集成电路、音频处理集成电路、视频处理集成电路。

5、计算机集成电路,包括中央控制单元(CPU)、内存储器、外存储器、I/O控制电路等。

6、通信集成电路

7、专业控制集成电路

参考资料来源:百度百科-IC

IC型号 CH开头是哪家公司的

在下表格中列出的,都是个人相对熟悉的LED显示屏恒流驱动IC。市场上其它型号的恒流驱动IC,在表中没有提到,并不代表它们不优质。在此不对各品牌及其产品进行排名、比较,只根据功能和特性进行分类,列表的先后顺序不代表任何意义。部分芯片信息来源于IC规格书,若有理解错误,请指出更正!

(点击图片放大观看)

除MBI5120外,以上恒流驱动IC的封装方式均为目前行业使用最为普遍的QSOP24,16个恒流驱动通道。

如果将功能和特性进一步细分并考虑版本更迭,部分品牌的IC种类略显繁杂,这里只列出最常用型号以及最新版本的型号。

1、LED白灯为什么比较容易死灯?

2、为什么LED显示屏低电压供电节能方案没有得到广泛应用?

IC型号HW-101A-FT NHE520-HF-6丝印什么

IGBT(绝缘栅双极型晶体管),是由BJT(双极结型晶体三极管)和MOS(绝缘栅型场效应管)组成的复合全控型-电压驱动式-功率半导体器件,其具有自关断的特征。

简单讲,是一个非通即断的开关,IGBT没有放大电压的功能,导通时可以看做导线,断开时当做开路。IGBT融合了BJT和MOSFET的两种器件的优点,如驱动功率小和饱和压降低等。

┃IGBT的基本原理

IGBT是以GTR为主导元件,MOSFET为驱动元件的达林顿结构的复合器件。其外部有三个电极,分别为G-栅极,C-集电极,E-发射极。

在IGBT使用过程中,可以通过控制其集-射极电压UCE和栅-射极电压UGE的大小,从而实现对IGBT导通/关断/阻断状态的控制。

1)当IGBT栅-射极加上加0或负电压时,MOSFET内沟道消失,IGBT呈关断状态。

2)当集-射极电压UCE<0时,J3的PN结处于反偏,IGBT呈反向阻断状态。

3)当集-射极电压UCE>0时,分两种情况:

①若栅-射极电压UGE<Uth,沟道不能形成,IGBT呈正向阻断状态。

②若栅-射极电压UGE>Uth,栅极沟道形成,IGBT呈导通状态(正常工作)。此时,空穴从P+区注入到N基区进行电导调制,减少N基区电阻RN的值,使IGBT通态压降降低。

1)具有非常低的导通压降与优秀的导通电流密度.所以可以使用更小尺寸的器件从而降低成本。

2)因为栅极结构使用MOS管的同类设计,所以驱动功率非常小,驱动电路也很简单.与可控硅/BJT这些电流控制型器件来比,在高压与高电流应用场景,IGBT非常易于控制。

3)与BJT相比具有更好的电流传导能力.在正向与反向隔离方面参数也更优秀。

2、不足之处

1)开关速度低于功率MOSFET,但是高于BJT.因为是少数载流子器件,集电极电流残余导致关断速度较慢。

2)因为内部的PNPN型可控硅结构,有一定概率会锁死。

┃ IGBT产业链

IGBT是技术成熟的器件,产业链的各个环节都相对稳定。

IGBT核心技术为IGBT芯片的设计和制造以及IGBT模块的设计、制造和测试。行业壁垒非常高,包括对人才和设备的要求也极高。

行业认证周期长,车规级认证周期长达2~3年,定点企业先发优势明显。

IGBT制造属于资本密集型行业,一条年产25万片的8寸晶圆线投资额超20亿元。

IGBT产业链图谱及代表公司:

┃IGBT热门型号汇总

END

*免责声明:本文素材版权归原作者所有。icspec仅作引用和参考,不代表icspec的立场。如有异议,请联系我们修改或删除。

芯片规格书搜索工具

icspec

规格书查询|企业查询|行业资讯

找规格书,就上icspec!

iC型号板查询网

MOS管,即金属(Metal)—氧化物(Oxide)—半导体(Semiconductor)场效应晶体管,是一种应用场效应原理工作的半导体器件。

和普通双极型晶体管相比,MOS管具有输入阻抗高、噪声低、动态范围大、功耗小、易于集成等优势,在开关电源、镇流器、高频感应加热、高频逆变焊机、通信电源等高频电源领域得到了越来越普遍的应用。

┃Mosfet管的种类及结构

MOS管是FET的一种(另一种为JFET结型场效应管),主要有两种结构形式:N沟道型和P沟道型;又根据场效应原理的不同,分为耗尽型(当栅压为零时有较大漏极电流)和增强型(当栅压为零,漏极电流也为零,必须再加一定的栅压之后才有漏极电流)两种。因此,MOS管可以被制构成P沟道增强型、P沟道耗尽型、N沟道增强型、N沟道耗尽型4种类型产品。

每一个MOS管都提供有三个电极:Gate栅极(表示为“G”)、Source源极(表示为“S”)、Drain漏极(表示为“D”)。接线时,对于N沟道的电源输入为D,输出为S;P沟道的电源输入为S,输出为D;且增强型、耗尽型的接法基本一样。

图表2 MOS管内部结构图

从结构图可发现,N沟道型场效应管的源极和漏极接在N型半导体上,而P沟道型场效应管的源极和漏极则接在P型半导体上。场效应管输出电流由输入的电压(或称场电压)控制,其输入的电流极小或没有电流输入,使得该器件有很高的输入阻抗,这也是MOS管被称为场效应管的重要原因。

N沟道增强型MOS管在P型半导体上生成一层SiO2薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极(漏极D、源极S);在源极和漏极之间的SiO2绝缘层上镀一层金属铝作为栅极G;P型半导体称为衬底,用符号B表示。由于栅极与其它电极之间是相互绝缘的,所以NMOS又被称为绝缘栅型场效应管。

当栅极G和源极S之间不加任何电压,即VGS=0时,由于漏极和源极两个N+型区之间隔有P型衬底,相当于两个背靠背连接的PN结,它们之间的电阻高达1012Ω,即D、S之间不具备导电的沟道,所以无论在漏、源极之间加何种极性的电压,都不会产生漏极电流ID。

图表3 N沟道增强型MOS管结构示意图

当将衬底B与源极S短接,在栅极G和源极S之间加正电压,即VGS>0时,如图表3(a)所示,则在栅极与衬底之间产生一个由栅极指向衬底的电场。在这个电场的作用下,P衬底表面附近的空穴受到排斥将向下方运动,电子受电场的吸引向衬底表面运动,与衬底表面的空穴复合,形成了一层耗尽层。

如果进一步提高VGS电压,使VGS达到某一电压VT时,P衬底表面层中空穴全部被排斥和耗尽,而自由电子大量地被吸引到表面层,由量变到质变,使表面层变成了自由电子为多子的N型层,称为“反型层”,如图表3(b)所示。

反型层将漏极D和源极S两个N+型区相连通,构成了漏、源极之间的N型导电沟道。把开始形成导电沟道所需的VGS值称为阈值电压或开启电压,用VGS(th)表示。显然,只有VGS>VGS(th)时才有沟道,而且VGS越大,沟道越厚,沟道的导通电阻越小,导电能力越强;“增强型”一词也由此得来。

图表4 耗尽层与反型层产生的结构示意图

在VGS>VGS(th)的条件下,如果在漏极D和源极S之间加上正电压VDS,导电沟道就会有电流流通。漏极电流由漏区流向源区,因为沟道有一定的电阻,所以沿着沟道产生电压降,使沟道各点的电位沿沟道由漏区到源区逐渐减小,靠近漏区一端的电压VGD最小,其值为VGD=VGS-VDS,相应的沟道最薄;靠近源区一端的电压最大,等于VGS,相应的沟道最厚。

这样就使得沟道厚度不再是均匀的,整个沟道呈倾斜状。随着VDS的增大,靠近漏区一端的沟道越来越薄。

当VDS增大到某一临界值,使VGD≤VGS(th)时,漏端的沟道消失,只剩下耗尽层,把这种情况称为沟道“预夹断”,如图表4(a)所示。继续增大VDS[即VDS>VGS-VGS(th)],夹断点向源极方向移动,如图表4(b)所示。

尽管夹断点在移动,但沟道区(源极S到夹断点)的电压降保持不变,仍等于VGS-VGS(th)。因此,VDS多余部分电压[VDS-(VGS-VGS(th))]全部降到夹断区上,在夹断区内形成较强的电场。这时电子沿沟道从源极流向夹断区,当电子到达夹断区边缘时,受夹断区强电场的作用,会很快的漂移到漏极。

图表5 预夹断及夹断区形成示意图

2、P沟道增强型场效应管原理

P沟道增强型MOS管因在N型衬底中生成P型反型层而得名,其通过光刻、扩散的方法或其他手段,在N型衬底(基片)上制作出两个掺杂的P区,分别引出电极(源极S和漏极D),同时在漏极与源极之间的SiO2绝缘层上制作金属栅极G。其结构和工作原理与N沟道MOS管类似;只是使用的栅-源和漏-源电压极性与N沟道MOS管相反。

在正常工作时,P沟道增强型MOS管的衬底必须与源极相连,而漏极对源极的电压VDS应为负值,以保证两个P区与衬底之间的PN结均为反偏,同时为了在衬底顶表面附近形成导电沟道,栅极对源极的电压也应为负。

图表6 P沟道增强型MOS管的结构示意图

当VDS=0时。在栅源之间加负电压比,由于绝缘层的存在,故没有电流,但是金属栅极被补充电而聚集负电荷,N型半导体中的多子电子被负电荷排斥向体内运动,表面留下带正电的离子,形成耗尽层。

随着G、S间负电压的增加,耗尽层加宽,当VDS增大到一定值时,衬底中的空穴(少子)被栅极中的负电荷吸引到表面,在耗尽层和绝缘层之间形成一个P型薄层,称反型层,如图表6(2)所示。

这个反型层就构成漏源之间的导电沟道,这时的VGS称为开启电压VGS(th),达到VGS(th)后再增加,衬底表面感应的空穴越多,反型层加宽,而耗尽层的宽度却不再变化,这样我们可以用VGS的大小控制导电沟道的宽度。

图表7 P沟道增强型MOS管耗尽层及反型层形成示意图

当VDS≠0时。导电沟道形成以后,D、S间加负向电压时,那么在源极与漏极之间将有漏极电流ID流通,而且ID随VDS而增,ID沿沟道产生的压降使沟道上各点与栅极间的电压不再相等,该电压削弱了栅极中负电荷电场的作用,使沟道从漏极到源极逐渐变窄,如图表7(1)所示。

当VDS增大到使VGD=VGS(即VDS=VGS-VGS(TH)),沟道在漏极附近出现预夹断,如图表7(2)所示。再继续增大VDS,夹断区只是稍有加长,而沟道电流基本上保持预夹断时的数值,其原因是当出现预夹断时再继续增大VDS,VDS的多余部分就全部加在漏极附近的夹断区上,故形成的漏极电流ID近似与VDS无关。

图表8 P沟道增强型MOS管预夹断及夹断区形成示意图

3、N沟道耗尽型场效应管原理

N沟道耗尽型MOS管的结构与增强型MOS管结构类似,只有一点不同,就是N沟道耗尽型MOS管在栅极电压VGS=0时,沟道已经存在。这是因为N沟道是在制造过程中采用离子注入法预先在D、S之间衬底的表面、栅极下方的SiO2绝缘层中掺入了大量的金属正离子,该沟道亦称为初始沟道。

当VGS=0时,这些正离子已经感应出反型层,形成了沟道,所以只要有漏源电压,就有漏极电流存在;当VGS>0时,将使ID进一步增加;VGS<0时,随着VGS的减小,漏极电流逐渐减小,直至ID=0。对应ID=0的VGS称为夹断电压或阈值电压,用符号VGS(off)或Up表示。

由于耗尽型MOSFET在VGS=0时,漏源之间的沟道已经存在,所以只要加上VDS,就有ID流通。如果增加正向栅压VGS,栅极与衬底之间的电场将使沟道中感应更多的电子,沟道变厚,沟道的电导增大。

如果在栅极加负电压(即VGS<0),就会在相对应的衬底表面感应出正电荷,这些正电荷抵消N沟道中的电子,从而在衬底表面产生一个耗尽层,使沟道变窄,沟道电导减小。当负栅压增大到某一电压VGS(off)时,耗尽区扩展到整个沟道,沟道完全被夹断(耗尽),这时即使VDS仍存在,也不会产生漏极电流,即ID=0。

图表9 N沟道耗尽型MOS管结构(左)及转移特性(右)示意图

4、P沟道耗尽型场效应管原理

P沟道耗尽型MOS管的工作原理与N沟道耗尽型MOS管完全相同,只不过导电的载流子不同,供电电压极性也不同。

5、耗尽型与增强型MOS管的区别

耗尽型与增强型的主要区别在于耗尽型MOS管在G端(Gate)不加电压时有导电沟道存在,而增强型MOS管只有在开启后,才会出现导电沟道;两者的控制方式也不一样,耗尽型MOS管的VGS(栅极电压)可以用正、零、负电压控制导通,而增强型MOS管必须使得VGS>VGS(th)(栅极阈值电压)才行。

┃ Mosfet管的重要特性

1、导通特性

导通的意义是作为开关,相当于开关闭合。NMOS的特性,VGS大于一定的值就会导通,适用于源极接地时的情况(低端驱动),只需栅极电压达到4V或10V就可以了。PMOS的特性是,VGS小于一定的值就会导通,适用于源极接VCC时的情况(高端驱动)。

2、损失特性

不管是NMOS还是PMOS,导通后都有导通电阻存在,电流就会被电阻消耗能量,这部分消耗的能量叫做导通损耗。小功率MOS管导通电阻一般在几毫欧至几十毫欧左右,选择导通电阻小的MOS管会减小导通损耗。

3、寄生电容驱动特性

跟双极性晶体管相比,MOS管需要GS电压高于一定的值才能导通,而且还要求较快的导通速度。在MOS管的结构中可以看到,在GS、GD之间存在寄生电容,而MOS管的驱动,理论上就是对电容的充放电。

图表10  4种MOS管特性比较示意图

4、寄生二极管

漏极和源极之间有一个寄生二极管,即“体二极管”,在驱动感性负载(如马达、继电器)应用中,主要用于保护回路。不过体二极管只在单个MOS管中存在,在集成电路芯片内部通常是没有的。

图表11 寄生二极管位置示意图

5、不同耐压MOS管特点

不同耐压的MOS管,其导通电阻中各部分电阻比例分布不同。如耐压30V的MOS管,其外延层电阻仅为总导通电阻的29%,耐压600V的MOS管的外延层电阻则是总导通电阻的96.5%。

图表12 不同耐压MOS管特点一览表

┃Mosfet管热门型号汇总

END

*免责声明:本文素材版权归原作者所有。icspec仅作引用和参考,不代表icspec的立场。如有异议,请联系我们修改或删除。

芯片规格书搜索工具

icspec

规格书查询|企业查询|行业资讯

找规格书,就上icspec!