主页 > 型号大全 > 正文

p沟道型号(p沟道工作原理)

2024-04-06 17:16:55 来源:阿帮个性网 点击:
文章目录导航:
  1. p沟道结型场效应管电路图
  2. p沟道工作原理
  3. p沟道和n沟道
  4. p沟道结构图
  5. 沟道尺寸
  6. p沟道是npn还是pnp
  7. n沟道p沟道的区别
  8. p沟道jfet

p沟道结型场效应管电路图

A1SHB场效应管型号是SI2035。A1SHB是P沟道场效应管,可代换型号如下:212T、212S、A1、H1SP、016H、016X、SO16Y、M21、PJ2301、PJ2305、XP152A、Si2301、Si2305、AO3401。

替换原则是:最大集电极耗散功率Pcm不小于原用管;最大集电结反向击穿电压Vcb0不小于原管;最高工作频率f(振荡频率fT)不小于原管。

扩展资料:

三极管概述:

1,半导体三极管也称为晶体三极管,可以说它是电子电路中最重要的器件。它最主要的功能是电流放大和开关作用。三极管顾名思义具有三个电极。二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。

2,三极管的种类很多,并且不同型号各有不同的用途。三极管大都是塑料封装或金属封装,常见三极管的外观,有一个箭头的电极是发射极,箭头朝外的是NPN型三极管,而箭头朝内的是PNP型。实际上箭头所指的方向是电流的方向。  ­

3,电子制作中常用的三极管有90××系列,包括低频小功率硅管9013(NPN)、9012(PNP),低噪声管9014(NPN),高频小功率管9018(NPN)等。它们的型号一般都标在塑壳上,而样子都一样,都是TO-92标准封装。

4,在老式的电子产品中还能见到3DG6(低频小功率硅管)、3AX31(低频小功率锗管)等,它们的型号也都印在金属的外壳上。

p沟道工作原理

笔记本常用MOS管的内部原理和判断

常用的mos系列有fds4410,4500,4800,6680,6961,9435还有irf的71xx系列,icp的8xxx系列等

笔记本常用MOS管单管的极性分类

Mos管主要分成2大类,一个是p沟,另一种是n沟,比较代表的管子有4410,4800,4435,9435等

笔记本常用MOS管的内部结构

P沟道,主要代表型号4435,9435等

主要用于隔离保护电路中

N沟道,代表型号,fds4410,4412,4416,4800,irf7809,7811,tcp8002等

主要用于vcore,5v,3v,ddr_vcc等pwm电路中

复合型MOS管

就是将2个mos集成在一个sop8封装的结构里,有p+p,p+n,n+n等方法,引脚定义也不尽相同

双n沟复合管

由2个独立的mos封装在同一个芯片上,电路上完全分开的

常用于1631,1632,1634,1999,1902,1904等芯片产生的5v,3.3vsus电压,也常用于ddr内存供电

复合管4814的内部结构

内部的d2和s1连接在一起

双N沟复合管4816

复合管p沟9935

复合型p沟管

一般用于隔离保护电路

复合型4500

P+N4500,用于隔离电路中

一般在笔记本上用的比较少,

在线的判断单管

单管的标志,一般用4410或4435等来代换

在pwm的电路中一般用n沟代换,4410等

在隔离电路中,一般可以短时间上电,4脚电压大于3脚用n带换,反之…

双管带换

典型的pwm电路,用双管的n沟mos带换,6961等

特殊引脚

p沟道和n沟道

A1SHB场效应管,型号是SI2035。A1SHB是P沟道场效应管,可代换型号如下:212T、212S、A1、H1SP、016H、016X、SO16Y、M21、PJ2301、PJ2305、XP152A、Si2301、Si2305、AO3401。  替换原则是:最大集电极耗散功率Pcm不小于原用管;最大集电结反向击穿电压Vcb0不小于原管;最高工作频率f(振荡频率fT)不小于原管。

p沟道结构图

MOS管,即金属(Metal)—氧化物(Oxide)—半导体(Semiconductor)场效应晶体管,是一种应用场效应原理工作的半导体器件。

和普通双极型晶体管相比,MOS管具有输入阻抗高、噪声低、动态范围大、功耗小、易于集成等优势,在开关电源、镇流器、高频感应加热、高频逆变焊机、通信电源等高频电源领域得到了越来越普遍的应用。

┃Mosfet管的种类及结构

MOS管是FET的一种(另一种为JFET结型场效应管),主要有两种结构形式:N沟道型和P沟道型;又根据场效应原理的不同,分为耗尽型(当栅压为零时有较大漏极电流)和增强型(当栅压为零,漏极电流也为零,必须再加一定的栅压之后才有漏极电流)两种。因此,MOS管可以被制构成P沟道增强型、P沟道耗尽型、N沟道增强型、N沟道耗尽型4种类型产品。

每一个MOS管都提供有三个电极:Gate栅极(表示为“G”)、Source源极(表示为“S”)、Drain漏极(表示为“D”)。接线时,对于N沟道的电源输入为D,输出为S;P沟道的电源输入为S,输出为D;且增强型、耗尽型的接法基本一样。

图表2 MOS管内部结构图

从结构图可发现,N沟道型场效应管的源极和漏极接在N型半导体上,而P沟道型场效应管的源极和漏极则接在P型半导体上。场效应管输出电流由输入的电压(或称场电压)控制,其输入的电流极小或没有电流输入,使得该器件有很高的输入阻抗,这也是MOS管被称为场效应管的重要原因。

N沟道增强型MOS管在P型半导体上生成一层SiO2薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极(漏极D、源极S);在源极和漏极之间的SiO2绝缘层上镀一层金属铝作为栅极G;P型半导体称为衬底,用符号B表示。由于栅极与其它电极之间是相互绝缘的,所以NMOS又被称为绝缘栅型场效应管。

当栅极G和源极S之间不加任何电压,即VGS=0时,由于漏极和源极两个N+型区之间隔有P型衬底,相当于两个背靠背连接的PN结,它们之间的电阻高达1012Ω,即D、S之间不具备导电的沟道,所以无论在漏、源极之间加何种极性的电压,都不会产生漏极电流ID。

图表3 N沟道增强型MOS管结构示意图

当将衬底B与源极S短接,在栅极G和源极S之间加正电压,即VGS>0时,如图表3(a)所示,则在栅极与衬底之间产生一个由栅极指向衬底的电场。在这个电场的作用下,P衬底表面附近的空穴受到排斥将向下方运动,电子受电场的吸引向衬底表面运动,与衬底表面的空穴复合,形成了一层耗尽层。

如果进一步提高VGS电压,使VGS达到某一电压VT时,P衬底表面层中空穴全部被排斥和耗尽,而自由电子大量地被吸引到表面层,由量变到质变,使表面层变成了自由电子为多子的N型层,称为“反型层”,如图表3(b)所示。

反型层将漏极D和源极S两个N+型区相连通,构成了漏、源极之间的N型导电沟道。把开始形成导电沟道所需的VGS值称为阈值电压或开启电压,用VGS(th)表示。显然,只有VGS>VGS(th)时才有沟道,而且VGS越大,沟道越厚,沟道的导通电阻越小,导电能力越强;“增强型”一词也由此得来。

图表4 耗尽层与反型层产生的结构示意图

在VGS>VGS(th)的条件下,如果在漏极D和源极S之间加上正电压VDS,导电沟道就会有电流流通。漏极电流由漏区流向源区,因为沟道有一定的电阻,所以沿着沟道产生电压降,使沟道各点的电位沿沟道由漏区到源区逐渐减小,靠近漏区一端的电压VGD最小,其值为VGD=VGS-VDS,相应的沟道最薄;靠近源区一端的电压最大,等于VGS,相应的沟道最厚。

这样就使得沟道厚度不再是均匀的,整个沟道呈倾斜状。随着VDS的增大,靠近漏区一端的沟道越来越薄。

当VDS增大到某一临界值,使VGD≤VGS(th)时,漏端的沟道消失,只剩下耗尽层,把这种情况称为沟道“预夹断”,如图表4(a)所示。继续增大VDS[即VDS>VGS-VGS(th)],夹断点向源极方向移动,如图表4(b)所示。

尽管夹断点在移动,但沟道区(源极S到夹断点)的电压降保持不变,仍等于VGS-VGS(th)。因此,VDS多余部分电压[VDS-(VGS-VGS(th))]全部降到夹断区上,在夹断区内形成较强的电场。这时电子沿沟道从源极流向夹断区,当电子到达夹断区边缘时,受夹断区强电场的作用,会很快的漂移到漏极。

图表5 预夹断及夹断区形成示意图

2、P沟道增强型场效应管原理

P沟道增强型MOS管因在N型衬底中生成P型反型层而得名,其通过光刻、扩散的方法或其他手段,在N型衬底(基片)上制作出两个掺杂的P区,分别引出电极(源极S和漏极D),同时在漏极与源极之间的SiO2绝缘层上制作金属栅极G。其结构和工作原理与N沟道MOS管类似;只是使用的栅-源和漏-源电压极性与N沟道MOS管相反。

在正常工作时,P沟道增强型MOS管的衬底必须与源极相连,而漏极对源极的电压VDS应为负值,以保证两个P区与衬底之间的PN结均为反偏,同时为了在衬底顶表面附近形成导电沟道,栅极对源极的电压也应为负。

图表6 P沟道增强型MOS管的结构示意图

当VDS=0时。在栅源之间加负电压比,由于绝缘层的存在,故没有电流,但是金属栅极被补充电而聚集负电荷,N型半导体中的多子电子被负电荷排斥向体内运动,表面留下带正电的离子,形成耗尽层。

随着G、S间负电压的增加,耗尽层加宽,当VDS增大到一定值时,衬底中的空穴(少子)被栅极中的负电荷吸引到表面,在耗尽层和绝缘层之间形成一个P型薄层,称反型层,如图表6(2)所示。

这个反型层就构成漏源之间的导电沟道,这时的VGS称为开启电压VGS(th),达到VGS(th)后再增加,衬底表面感应的空穴越多,反型层加宽,而耗尽层的宽度却不再变化,这样我们可以用VGS的大小控制导电沟道的宽度。

图表7 P沟道增强型MOS管耗尽层及反型层形成示意图

当VDS≠0时。导电沟道形成以后,D、S间加负向电压时,那么在源极与漏极之间将有漏极电流ID流通,而且ID随VDS而增,ID沿沟道产生的压降使沟道上各点与栅极间的电压不再相等,该电压削弱了栅极中负电荷电场的作用,使沟道从漏极到源极逐渐变窄,如图表7(1)所示。

当VDS增大到使VGD=VGS(即VDS=VGS-VGS(TH)),沟道在漏极附近出现预夹断,如图表7(2)所示。再继续增大VDS,夹断区只是稍有加长,而沟道电流基本上保持预夹断时的数值,其原因是当出现预夹断时再继续增大VDS,VDS的多余部分就全部加在漏极附近的夹断区上,故形成的漏极电流ID近似与VDS无关。

图表8 P沟道增强型MOS管预夹断及夹断区形成示意图

3、N沟道耗尽型场效应管原理

N沟道耗尽型MOS管的结构与增强型MOS管结构类似,只有一点不同,就是N沟道耗尽型MOS管在栅极电压VGS=0时,沟道已经存在。这是因为N沟道是在制造过程中采用离子注入法预先在D、S之间衬底的表面、栅极下方的SiO2绝缘层中掺入了大量的金属正离子,该沟道亦称为初始沟道。

当VGS=0时,这些正离子已经感应出反型层,形成了沟道,所以只要有漏源电压,就有漏极电流存在;当VGS>0时,将使ID进一步增加;VGS<0时,随着VGS的减小,漏极电流逐渐减小,直至ID=0。对应ID=0的VGS称为夹断电压或阈值电压,用符号VGS(off)或Up表示。

由于耗尽型MOSFET在VGS=0时,漏源之间的沟道已经存在,所以只要加上VDS,就有ID流通。如果增加正向栅压VGS,栅极与衬底之间的电场将使沟道中感应更多的电子,沟道变厚,沟道的电导增大。

如果在栅极加负电压(即VGS<0),就会在相对应的衬底表面感应出正电荷,这些正电荷抵消N沟道中的电子,从而在衬底表面产生一个耗尽层,使沟道变窄,沟道电导减小。当负栅压增大到某一电压VGS(off)时,耗尽区扩展到整个沟道,沟道完全被夹断(耗尽),这时即使VDS仍存在,也不会产生漏极电流,即ID=0。

图表9 N沟道耗尽型MOS管结构(左)及转移特性(右)示意图

4、P沟道耗尽型场效应管原理

P沟道耗尽型MOS管的工作原理与N沟道耗尽型MOS管完全相同,只不过导电的载流子不同,供电电压极性也不同。

5、耗尽型与增强型MOS管的区别

耗尽型与增强型的主要区别在于耗尽型MOS管在G端(Gate)不加电压时有导电沟道存在,而增强型MOS管只有在开启后,才会出现导电沟道;两者的控制方式也不一样,耗尽型MOS管的VGS(栅极电压)可以用正、零、负电压控制导通,而增强型MOS管必须使得VGS>VGS(th)(栅极阈值电压)才行。

┃ Mosfet管的重要特性

1、导通特性

导通的意义是作为开关,相当于开关闭合。NMOS的特性,VGS大于一定的值就会导通,适用于源极接地时的情况(低端驱动),只需栅极电压达到4V或10V就可以了。PMOS的特性是,VGS小于一定的值就会导通,适用于源极接VCC时的情况(高端驱动)。

2、损失特性

不管是NMOS还是PMOS,导通后都有导通电阻存在,电流就会被电阻消耗能量,这部分消耗的能量叫做导通损耗。小功率MOS管导通电阻一般在几毫欧至几十毫欧左右,选择导通电阻小的MOS管会减小导通损耗。

3、寄生电容驱动特性

跟双极性晶体管相比,MOS管需要GS电压高于一定的值才能导通,而且还要求较快的导通速度。在MOS管的结构中可以看到,在GS、GD之间存在寄生电容,而MOS管的驱动,理论上就是对电容的充放电。

图表10  4种MOS管特性比较示意图

4、寄生二极管

漏极和源极之间有一个寄生二极管,即“体二极管”,在驱动感性负载(如马达、继电器)应用中,主要用于保护回路。不过体二极管只在单个MOS管中存在,在集成电路芯片内部通常是没有的。

图表11 寄生二极管位置示意图

5、不同耐压MOS管特点

不同耐压的MOS管,其导通电阻中各部分电阻比例分布不同。如耐压30V的MOS管,其外延层电阻仅为总导通电阻的29%,耐压600V的MOS管的外延层电阻则是总导通电阻的96.5%。

图表12 不同耐压MOS管特点一览表

┃Mosfet管热门型号汇总

END

*免责声明:本文素材版权归原作者所有。icspec仅作引用和参考,不代表icspec的立场。如有异议,请联系我们修改或删除。

芯片规格书搜索工具

icspec

规格书查询|企业查询|行业资讯

找规格书,就上icspec!

沟道尺寸

海飞乐技术-200V-120A,-200V106A,-200V-90A,-200V-68A,-200V-53A,-200V-48A,-200V-32A,-200V-10A的P沟道MOS,-200V-30A,-200V-26A,-200V-24A,海飞乐技术-200V-16A,-150V-44A的P沟道MOS,-150V-36A,-150V-22A,-150V-15A,-150V-10A。海飞乐技术-250V-120A,-250V106A,-250V-90A,-250V-68A,-250V-53A,-250V-48A,-250V-32A,-250V-10A的P沟道MOS,-250V-30A,-250V-26A,-250V-24A。海飞乐技术封装-100V-210A,-100V-195A,-100V170A的P沟道MOS,-100V-150A,-100V-140A,-100V-110A,-100V-100A,海飞乐技术-100V-90A,-100V-80A,-100V-76A,-100V-70A,-100V-60A,-100V-55A,-100V-52A,-100V-50A,-100V-40A的P沟道MOS,-100V-36A,-100V-30A,-100V-26A,-100V-20A,-100V-18A的P沟道MOS。

p沟道是npn还是pnp

1。对于主板上来说,常用的场管为3055,15N03,45N03,60N03,还有70N03 2,3。说个简单的给你 黑表笔接D极,红表笔接S极,有500欧左右的阻值为N沟 红表笔接D极,黑表笔接S极,有500欧左右的阻值为P沟 4。至于代换,N沟代换N沟,P沟代换P沟,还有最好是使用相同型号或者是功率大一些的来代换(一般修主板的基本备用是60N03这个型号)

n沟道p沟道的区别

举例说明,左图为N沟道场效应管(型号IRF630),右图为P沟道场效应管(型号IRF9640),电源电压12V,如下图图中电阻等元件可以根据实际电路更换相关阻值,从图中可以了解场效应管做开关电路的接法。

场效应管,英文缩写MOSFET,一般有3个管脚。依内部PN结方向的不同,MOSFET分为N沟道型和P沟道型,一般使用N沟道型可带来便捷性。

1,N沟道MOSFET管用法:(栅极G高电平D与S间导通,栅极G低电平D与S间截止,P沟道与之相反)栅极/基极(G)接控制信号,源极(S)接负载电源负极(模拟地),漏极(D)接负载输出负极,负载输入正极直接接负载电源正极。

当栅极/基极(G)电压大于MOSFET管开启电压(通常为1.2V),源极(S)到漏极(D)导通,导通电流很小,可以认为源极(S)和漏极(D)直接短接。这样负载负极被连通负载电源负极,负载工作。

当栅极/基极(G)电压小于MOSFET管开启电压时,源极(S)到漏极(D)电阻极大,可以认为源极(S)到漏极(D)断路,则负载负极被负载电源正极拉高,负载不工作。

这样,只要控制MOSFET的栅极/基极(G)电压有无,即可控制负载的工作与不工作,形成一个开关效应。MOSFET管的开关时间非常快,一般在纳秒极,就认为是瞬间开启/关闭就可以了,在MOSFET管内部是没有延迟的。

扩展资料:

工作原理:

场效应管工作原理用一句话说,就是“漏极-源极间流经沟道的ID,用以栅极与沟道间的pn结形成的反偏的栅极电压控制ID”。更正确地说,ID流经通路的宽度,即沟道截面积,它是由pn结反偏的变化,产生耗尽层扩展变化控制的缘故。

在VGS=0的非饱和区域,表示的过渡层的扩展因为不很大,根据漏极-源极间所加VDS的电场,源极区域的某些电子被漏极拉去,即从漏极向源极有电流ID流动。

从门极向漏极扩展的过渡层将沟道的一部分构成堵塞型,ID饱和。将这种状态称为夹断。这意味着过渡层将沟道的一部分阻挡,并不是电流被切断。

在VGS=0的非饱和区域,表示的过渡层的扩展因为不很大,根据漏极-源极间所加VDS的电场,源极区域的某些电子被漏极拉去,即从漏极向源极有电流ID流动。从门极向漏极扩展的过渡层将沟道的一部分构成堵塞型,ID饱和。将这种状态称为夹断。这意味着过渡层将沟道的一部分阻挡,并不是电流被切断。

从门极向漏极扩展的过渡层将沟道的一部分构成堵塞型,ID饱和。将这种状态称为夹断。这意味着过渡层将沟道的一部分阻挡,并不是电流被切断。

在过渡层由于没有电子、空穴的自由移动,在理想状态下几乎具有绝缘特性,通常电流也难流动。但是此时漏极-源极间的电场,实际上是两个过渡层接触漏极与门极下部附近,由于漂移电场拉去的高速电子通过过渡层。因漂移电场的强度几乎不变产生ID的饱和现象。

参考资料:百度百科-场效应管

p沟道jfet

海飞乐技术-200V-120A,-200V106A,-200V-90A,-200V-68A,-200V-53A,-200V-48A,-200V-32A,-200V-10A的P沟道MOS,-200V-30A,-200V-26A,-200V-24A,海飞乐技术-200V-16A,-150V-44A的P沟道MOS,-150V-36A,-150V-22A,-150V-15A,-150V-10A。海飞乐技术-250V-120A,-250V106A,-250V-90A,-250V-68A,-250V-53A,-250V-48A,-250V-32A,-250V-10A的P沟道MOS,-250V-30A,-250V-26A,-250V-24A。海飞乐技术封装-100V-210A,-100V-195A,-100V170A的P沟道MOS,-100V-150A,-100V-140A,-100V-110A,-100V-100A,海飞乐技术-100V-90A,-100V-80A,-100V-76A,-100V-70A,-100V-60A,-100V-55A,-100V-52A,-100V-50A,-100V-40A的P沟道MOS,-100V-36A,-100V-30A,-100V-26A,-100V-20A,-100V-18A的P沟道MOS。