主页 > 型号大全 > 正文

桥梁伸缩缝型号(桥梁伸缩缝型号D-80)

2024-04-02 16:09:05 来源:阿帮个性网 点击:
文章目录导航:
  1. 桥梁伸缩缝型号字母代表意思
  2. 桥梁伸缩缝型号选择
  3. 桥梁伸缩缝型号有哪些?
  4. 桥梁伸缩缝型号d-400是什么意思
  5. 桥梁伸缩缝型号过大的利弊
  6. 桥梁伸缩缝型号怎么划定的
  7. 桥梁伸缩缝型号怎么确定

桥梁伸缩缝型号字母代表意思

1)模数式:GQF-C型、GQF-Z型、GQF-L型、GQF-F型、GQF-MAL;2)梳齿型伸缩缝SCB、SSFB;3)TST弹性体伸缩装置;

桥梁伸缩缝型号选择

最大的是大位移模数式多组伸缩缝,伸缩量可达2米以上。

桥梁伸缩缝型号有哪些?

1、单缝型钢伸缩缝,单组式的公路桥梁伸缩缝GQF-C40、60、80型;GQF-F40、60、80型;GQF-Z40、60、80型;GQF,E40、60、80型;GQF-L40、60、80型号的单缝型钢伸缩缝/单组式桥梁伸缩缝。

2、多组式伸缩缝,模数式桥梁伸缩缝GQF-MZL120型、MZL160型、MZL240型、MZL480型等一些多组式模数式伸缩缝装置。

3、梳齿板式桥梁伸缩缝装置。

4、橡胶板型桥梁伸缩缝装置公路桥梁伸缩缝公司生产各类缝纫设备销售包括gqf-c型,gqf-z型和gqf-l型,gqf-f型,gqf-mzl型模数式公路桥梁伸缩缝伸缩装置,梳齿型号的公路桥梁伸缩缝,公路桥梁伸缩缝。

桥梁伸缩缝型号d-400是什么意思

d型只不过是一个统称,有可能是,C型、E型、F型、Z型,等其中的一种,F型就是指的是F型的型钢伸缩缝。

桥梁伸缩缝型号过大的利弊

点击上面蓝字关注我们

来源:中国公路如有版权问题,请联系删除

为满足桥面变形的要求,通常在两梁端之间、梁端与桥台之间或桥梁的铰接位置上设置伸缩缝。

要求伸缩缝在平行、垂直于桥梁轴线的两个方向,能自由伸缩,牢固可靠,车辆行驶过时应平顺、无突跳与噪声;

要能防止雨水和垃圾泥土渗入阻塞;安装、检查、养护、消除污物都要简易方便。 在设置伸缩缝处,栏杆与桥面铺装都要断开。

桥梁伸缩缝的作用:

在于调节由车辆荷载和桥梁建筑材料所引起的上部结构之间的位移和联结。斜交桥的伸缩装置一旦被破坏,将严重影响行车的速度、舒适性与安全,甚至造成行车安全事故。

伸缩缝功能:

保证梁体自由伸缩

使车辆平稳行驶

具有良好的密水性和排水性

便于清除沟槽污物

桥梁的伸缩缝长期暴露在大气中,使用环境比较恶劣,是桥梁结构中最易遭到破坏而又较难以修补的部位。

而桥梁伸缩缝的破坏,又可能引起很大的车辆冲击荷载,恶化行车状况,就会导致跳车、噪音、漏水、影响行车安全急剧降低桥梁使用寿命。

伸缩缝功能缺失或损坏的危害:

伸缩受阻,或墩台顶坏,或梁体内力增大

车辆行驶跳车,行驶不平稳

冲击作用增大,对桥梁尤其是端部造成损伤

渗水危及耐久性

桥梁伸缩缝型号有:GQF-C型、GQF-Z型、GQF-E型、GQF-F型、GQF-MZL型,全都是采用热轧整体成型的异型钢材设计的桥梁伸缩缝产品。

其中GQF-C型、GQF-Z型、GQF-L型、GQF-F型桥梁伸缩装置适用于伸缩量80mm以下的的桥梁。

GQF-MZL型桥梁伸缩装置型是由边梁、中梁、横梁和连动机构组成的模数式桥梁伸缩缝装置,适用于伸缩量80mm-1200mm的大中跨度桥梁。

代号表示方法与中华人民共和国交通行业标准表示方法相一致,以GQF-C60、GQF-F80、GQF-MZL480、GQF-C60(NR)、GQF-F80(CR)为例。

GQF为交通行业标准规定的伸缩缝装置代号。型式代号:-MZL表示模数式、直梁连杆链条型;

C、Z、F、L表示异型钢材的形状;数字表示伸缩装置位移量:0-1200mm;NR和CR表示橡胶种类:NR表示天然橡胶、CR表示氯丁橡胶。

无缝式:暗缝型(桥面连续、TST)

对接式:填塞对接式、嵌固对接式(仿毛勒式)

钢制支承式(梳齿板)

组合型:橡胶板式

模数式:毛勒式

无缝式

无缝式伸缩装置,是接缝构造不伸出桥面时,在桥梁端部的伸缩间隙中填入弹性材料并铺上防水材料,然后在桥面铺装层铺筑粘弹性复合材料,使伸缩缝处的桥面铺装与路面形成一连续体,

以接缝处的沥青混凝土、弹塑体等材料的变形来吸收梁体的伸缩,同时提供对车轮的支承的结构。常见的形式主要有桥面连续、TST碎石弹塑体伸缩缝等。

此类伸缩装置的主要特点为:①能适应桥梁上部构造的伸缩变形和小量转动变形;

②使桥面铺装形成连续体,行车时不产生冲击、震动,行车舒适性较好;

③伸缩装置本身形成多重防水构造,防水性较好;

④在寒冷地区,易于机械化除雪养护,不至于破坏接缝;

⑤施工简单易行,便于维修、更换。

这种类型的伸缩装置,一般是在路面(桥面)施工完成后用切割机切割路面,并在槽口内注入嵌缝材料而成的构造,仅适用于伸缩量较小的部位(一般

严格按照工艺要求安装的无缝伸缩缝粘接料,其寿命是一般改性沥青路面的两倍左右。 

桥面连续伸缩缝

TST碎石弹塑体伸缩缝

TST粘接料通常在零下-40℃时桥面不会变脆,在夏季高温达80℃时不会流动。

在全国范围内都可以正常使用。由于TST的高温粘附特性,在施工时可与现有路面牢固粘结变快,常温不粘,冷却后也不会被带走。

TST是一种特制的高粘弹塑性材料,常温下呈弹塑态,高温熔溶后可热灌人碎石中,成型后如同沥青砼状,能承受车辆荷载,又有弹性,可代替小伸缩缝的功能。

施工方便快捷,铺装冷却后,即可开放交通。当伸缩缝需要进行更换时,可半边施工。对交通繁忙路段不中断交通。

TST无缝伸缩缝施工工艺

1)开槽:按设计要求确定的槽口宽度放样、切缝、移走切除掉的路面材料并将槽口清理干净。

2)植筋:在距槽口边缘5cm,横桥向每间隔25cm打入一个膨胀螺栓,高度至1/2槽口深,并在螺栓内侧螺帽上顺缝方向通焊一根12的钢筋。

3)填充海绵体:高压水清洗槽口,然后用火焰烤热、烘干槽口表面。在相邻梁端缝隙内填海绵胶条,尽量填满,不留空隙。

4)在槽口外露面上均匀涂刷TST专用粘合剂,等待15min后浇人溶化的TST,并用刮板均匀地涂抹在槽口底面与侧面,厚度1~2mnl。然后放置跨缝钢板,以定位钉固定,并注意对中。

5)从槽口一端开始,放入已炒热(130~150℃)的大石子,厚度以能见到底层的TST为准。然后浇入TST,淹没石子。依此逐层铺设。

6)铺上炒热的小石料,高出桥面10mm,用平板振动器振实,然后用刮板刮平。一般为防止下沉,高出桥面l~2mm,这时可任意修整,并用铁锨拍平。

7)浇灌上足够的TST,淹没石子,这时为防止TST流到两边桥面上。可在槽口两边用木板挡住,以保持边缘的整齐。

8)修整边缘,去掉两边挡板,冷却1~2h,开放交通。

TST碎石弹塑体伸缩缝

对接式

填塞对接式伸缩装置是以伸缩体的弹性来承受车轮荷载的伸缩装置,其伸缩体所用的材料有砂石、碎石及各种形状橡胶制品等,也有采用泡沫塑料板或合成树脂材料等,伸缩体总是处于压缩状态。

常见的有U型锌铁皮型、木板填塞型、沥青填塞型及矩形橡胶条、管型橡胶条型等。U型镀锌铁皮伸缩装置,是一种广泛应用于70~80年代的填塞对接式伸缩装置。

此类伸缩装置的主要特点为:①造价低廉;②所需要材料易于加工;③施工简单易行;此类一般适用于伸缩量为40mm以内的桥梁,由于耐久性、防水性差,使用寿命短,目前已经很少采用。

嵌固对接式伸缩装置又称异型钢式或仿毛勒式伸缩装置,其结构原理是将不同形状的橡胶制品用不同形状的钢构件嵌固起来,然后通过锚固系统将它们与接缝处的梁体或桥台背墙锚固成整体,

由异型钢提供对车轮的支承,以橡胶条、橡胶带的拉压来吸收梁端的变形,其伸缩体可以处于受压状态,也可以处于受拉状态。

这是目前在国内公路桥梁建设中使用较为广泛的一种伸缩装置,常见的有W型、SW型、M型、PG型等。

此类伸缩装置适用于伸缩量小于80mm的桥梁结构,即接缝宽度为20mm一80mm。

此类伸缩装置的主要特点为:

①构造简单,受力明确,造价较低;

②伸缩装置主要构件均由生产厂家加工完成,施工现场安装,与梁端连接一般通过钢筋焊接,结构可靠,施工质量易于保证;

③耐久性较好;

④防、排水性能好;

⑤行车舒适度较好。

毛勒伸缩缝的两条设计原则是“刚性锚固”和“密封防水”。

 1)刚性锚固伸缩缝锚固的好坏直接影响伸缩缝的寿命。锚固金属板主要起传递力的作用。

经过疲劳试验的锚固装置直接焊接在边梁上。同时,边梁与桥梁上部结构刚性连接,以确保伸缩缝承载最大的交通负荷。

在长期承载动态交通负荷情况下,其它伸缩缝用螺钉或螺栓与桥梁上部结构连接的方法是不可行的。

毛勒伸缩缝在这方面进行了领先一步的设计,把承载和防水两项功能分离开来,逐一处理,这就更加有利于两项功能的加强与完善。

2)彻底防水

毛勒伸缩缝的特征之一是将氯丁橡胶密封条有效地嵌入边梁的凹槽内,可确保彻底防水。同时,只要用简单的工具便可在桥面上对其进行更换或用硫化法对其进行修补。

在边梁的保护下,密封条不遭受车轮的直接碾压,且其“V”型结构能起到自行清除泥沙的作用。

密封条既能抗拉力,又可进行侧向和垂直的位移。相比之下,伸缩缝的漏水给桥梁结构将造成一定的破坏。

钢制支承式

钢制支承式伸缩装置是用钢材装配而成的,能直接承受车轮荷载的构造。这种伸缩装置以前多用于钢桥,现在混凝土桥梁也有使用。

钢制支承式伸缩装置种类、现状、尺寸繁多,应用比较广泛的主要是钢梳齿型。

钢梳齿型桥梁伸缩装置的构造是由梳型板、连接件及锚固系统组成,有的钢梳齿型桥梁伸缩装置,在梳齿之间填塞有合成橡胶,以起防水作用,亦有采用专门的排水槽来解决排水问题的。

钢梳齿型桥梁伸缩装置,亦为钢板手指状接缝,根据梳齿的支承情况分为支承式和悬臂式。

此类伸缩装置的主要特点为:

①构件全部采用钢材加工装配,结构强度高;

②可以对车轮提供连续的支承,行车舒适度好;

③与梁体连接均采用预埋钢构件,连接可靠;

④抗冲击、震动能力强,耐久性好;

⑤可以适应较大的水平变位,可用于大型桥梁。

此类伸缩装置适用于伸缩量大于40mm的桥梁,但因其造价较高,应用范围不是很广泛。

梳齿板式伸缩缝

橡胶板式

橡胶板式伸缩装置是充分利用橡胶材料剪切模量低的特性,在橡胶体内设置承重钢板与锚固钢板,并设置螺栓孔,通过螺栓与梁端连接成整体。

这种结构依靠上下凹槽之间的橡胶体剪切变形来吸收梁的伸缩变位,橡胶体内埋设钢板,跨越梁端间隙,承受车轮荷载。

这种装置在我国应用较早,全国的生产厂家比较多,名称各不相同主要应用于上世纪80~90年代。

橡胶板式伸缩装置,具有构造简单、安装方便、经济适用等优点。主要为适合于伸缩量30mm一60mm的二级以下的公路桥梁,在我国应用较多。

这类伸缩装置具有以下性能特点:

①它是依靠上下两块钢板之间的橡胶体产生的剪切变形来满足结构的变形需该装置产生变形之后,在橡胶体内存有一定的变形能,对结构将有一定的约束要力;

②承重的跨缝钢板预埋在橡胶体内,与钢结构伸缩装置比较,它对车轮的冲击力,有一定的缓冲作用,有效地保护了伸缩装置与梁体,改善了行车条件;

③伸缩装置的角钢,有效地加强了梁体的端部强度。橡胶板式伸缩装置的伸缩体的水平变形内力较大,一般每延米约有30一35Nk,变形越大,水平力越大,装置的整体破坏的可能性也越大。  

因此,橡胶板式伸缩装置选型时,一定要考虑由于安装时的误差,温度误差等因素,选用的变形富裕量不小于30mm,以确保该类装置的正常使用。

橡胶板式伸缩缝

模数式

模数式桥梁伸缩装置,是由纵梁(异型钢)、横梁、位移控制箱、橡胶密封带等构件组成的伸缩装置。

由V型截面或其它截面形状的橡胶密封条(带),嵌接于异型钢边梁和中梁内,组成可伸缩的密封体,由异型钢直接承受车轮荷载,并将荷载传递至横梁,由横梁传递至梁体和桥台;

位移控制箱在伸缩装置吸收梁端变形时,保证异型钢间间隙保持均匀;橡胶密封带起防止杂物进入及防水。

模数式伸缩装置可以根据实际伸缩量的需要,增加中梁钢和密封体的个数,可组成满足大位移量的伸缩装置,一般用于伸缩量大于80mm的桥梁。从8Omm的单缝到12OOmm的多缝,共分15级。 

此类伸缩装置的主要特点为:

①整个伸缩装置由异型钢纵梁、钢横梁、控制传动机构、位移箱、密封橡胶条等多种构件组成,结构较复杂;

②密封性能较好,防、排水性能好;

③可适用于有较大伸缩量要求的桥梁;

④结构整体刚度较高,耐久性较好;

⑤行车舒适度较好。

但因该伸缩装置结构复杂,维修、更换均需要生产广家专业技术人员,加之造价高,一般只用于等级较高的大型桥梁。

玛格巴模数式桥梁伸缩装置

模数式桥梁伸缩装置

模数式桥梁伸缩装置,是由纵梁(异型钢)、横梁、位移控制箱、橡胶密封带等构件组成的伸缩装置。由V型截面或其它截面形状的橡胶密封条(带),嵌接于异型钢边梁和中梁内,

组成可伸缩的密封体,由异型钢直接承受车轮荷载,并将荷载传递至横梁,由横梁传递至梁体和桥台;位移控制箱在伸缩装置吸收梁端变形时,保证异型钢间间隙保持均匀;橡胶密封带起防止杂物进入及防水。

模数式伸缩装置可以根据实际伸缩量的需要,增加中梁钢和密封体的个数,可组成满足大位移量的伸缩装置,一般用于伸缩量大于80mm的桥梁。

此类伸缩装置的主要特点为:

①整个伸缩装置由异型钢纵梁、钢横梁、控制传动机构、位移箱、密封橡胶条等多种构件组成,结构较复杂;

②密封性能较好,防、排水性能好;

③可适用于有较大伸缩量要求的桥梁;

④结构整体刚度较高,耐久性较好;

⑤行车舒适度较好。

但因该伸缩装置结构复杂,维修、更换均需要生产广家专业技术人员,加之造价高,一般只用于等级较高的大型桥梁。

类型对比

梁体伸缩量是选择伸缩缝的最主要依据。

影响伸缩装置伸缩量的基本因素。

1、温度变化

温度变化是影响桥梁伸缩量的主要因素,它分为线性温度变化和非线性温度变化,其中线性温度变化对桥梁伸缩量影响占据主导地位。

桥梁结构在外界特定温度环境,梁体内部温度分布不均匀,梁体端部在材料热性能的变化下产生角变位。

对跨径小的桥梁(L≤8m),线膨胀系数很小,可不予考虑;对大跨径桥梁,设计时必须引起足够重视。一般设计时线膨胀系数可按下表数。

温度变化范围及线膨胀系数

2、混凝土的收缩和徐变

混凝土的收缩、徐变是混凝土构件本身所固有的属性,也是一种随机现象。混凝土的配合比、水灰比、塌落度、水泥品种、温度、相对湿度、混凝土的加载龄期、持荷时间和强度等对混凝土收缩、徐变影响很大。

钢筋混凝土桥和预应力混凝土桥均需考虑其收缩和徐变。徐变量按梁在预应力作用下弹性变形乘以徐变系数ф=2求得;收缩量以温度下降20℃来换算。

在安装伸缩缝时,收缩和徐变已经发展到一定程度,计算时应以安装时刻为基准,对混凝土收缩和徐变量加以折减。其折减系数β可参考下表选取:

3、桥梁纵向坡度

纵坡桥梁中活动支座通常做成水平的,当支座位移时,伸缩缝不仅发生水平变位,而且发生垂直错位(Δd),其值等于水平位移值乘以纵坡tgθ。

4、斜桥、弯桥的变位

斜桥、弯桥在发生支承位移方向的变位(ΔL)时,沿桥端线和垂直于桥端线方向也发生变位,即: Δd=ΔL·SINαΔS=ΔL·COSα 式中,α——倾斜角,ΔL——伸缩量。

5、各种荷载引起的桥梁饶度

桥梁在活载、恒载的作用下,端部发生角变位,使伸缩装置产生垂直、水平及角变位,如果梁体比较高,还会发生震动。

6、地震

地震对伸缩装置变位的影响较为复杂,目前还难以把握,设计时一般不予考虑,但有可靠的资料,能计算出地震对桥梁墩台的下沉、回转、水平移动及倾斜量时,设计时应给予考虑。 

梁体伸缩量计算

某预应力混凝土梁桥,梁长40m;温度变化范围-4。C~42。C;线膨胀系数α=10×10-6;收缩应变ε=20×10-5;徐变系数φ=2.0;

收缩、徐变折减系数β=0.6;预应力混凝土的平均轴向应力σp=80kg/cm2;混凝土弹性模量Ec=3.4×105kg/cm2;安装温度20οC。 

在没有超载的情况下,伸缩装置疲劳寿命建议值为10~15年。

1)对于填塞对接式式伸缩装置,如果出现角钢脱落、两侧混凝土破碎、桥台侧混凝土完全破碎、橡胶带断裂、坑槽很深时可判期使用寿命终结。

2)对于无缝式伸缩装置,如果出现跳车明显,两侧混凝土部分断裂,破碎严重,褶皱时可判其使用寿命终结。

3)对于嵌固对接式伸缩装置,如果出现跳车明显,桥面铺装严重破坏时可判其使用寿命终结。

4)对于板式橡胶伸缩装置,如果出现锚栓脱落,橡胶老化变形,混凝土开裂时可判其使用寿命终结。

无缝式

无缝式伸缩缝主要破坏形式有:弹塑体表面出现明显的车辙和裂缝,弹塑体表面产生搓板或局部脱落,骨料的局部脱落或大块剥落;或与桥面铺装接缝处桥面裂缝并逐渐碎裂、脱落;或伸缩装置范围内桥面铺装破损。

破损原因分析:弹塑体填料本身材料性能的问题,如弹塑体材料吸收梁端变形的能力及不足,材料强度不足,粘结料的质量达不到实际使用要求,施工时未按照生产厂家要求施工;

外界的温度,荷载等因素引起的桥梁的位移、转角导致弹塑体开裂、破损;伸缩装置结构本身的构造,如跨缝板强度不足等。

对接式

主要破坏形式有:橡胶条热天鼓起、冬天脱落,局部穿孔漏水;锚固区混凝土裂缝、碎裂;桥面铺装破碎、脱落。

破损原因分析:橡胶条安装时很难达到理想状态;主要锚固件,与梁体的预埋件连接薄弱,加之铺装混凝土较薄,后浇混凝土面层多缺乏振捣,密度和强度都有一定的问题,造成两侧混凝土容易破损;锚固区混凝土与桥面铺装连接强度不足,由微小裂缝发展至局部碎裂、脱落。 

钢制支承式

该类型伸缩装置主要破坏形式有:焊口开焊,由于工艺上的问题个别焊缝不易焊牢,出现整块钢板脱落,锚固件薄弱造成松动;个别钢齿板疲劳断裂。

破损原因分析:这类伸缩装置在加工使用过程中容易产生变形,难以保证齿板和垫板贴合,一旦产生了间隙,对连接部位受力很不利,

而引起噪声、跳车,加之日夜运营,齿板在反复荷载作用下,引起过早疲劳,紧固螺栓松动,梳尺板转动翘起外露。

橡胶板式

该类型伸缩装置主要破坏形式有:橡胶板剥离、预埋钢板外露、脱落、断裂,锚固螺栓剪断脱孔飞出,两侧混凝土开裂破碎,出现坑槽等多种破坏现象。

破损原因分析:首先是结构本身的原因(设计原因),此类伸缩装置,其原理是用上下凹槽之间的橡胶剪切变形来满足梁体的伸缩。

伸缩体内埋有钢板,跨越梁端间隙承受荷载,两侧有锚固钢板,通过螺栓与梁端连接,并且采用每米分块安装,整体性差。

又由于该类型伸缩装置的水平摩阻力很大,这样就对锚固系统要求极高。其次是产品质量不好,

例如,橡胶材质性能,加劲钢板的材质及合理布置,钢板与橡胶粘接强度、生产时的温度和湿度的控制等等都要求非常严格,稍有质量问题,

往往出现整板断裂,脱胶、胶层磨损、钢板外露、锚固螺栓剪断橡胶板飞出等等现象,与其橡胶伸缩装置的本身质量、横向宽度大、刚度差异大等都有直接关系。

模数式

该类型伸缩装置主要破坏形式有:主要中梁构件开焊,出现晃动、噪声;伸缩均匀性差;密封橡胶带老化、脱落或跳出、严重漏水;

装置两侧混凝土出现裂缝、坑槽,桥面铺装层局部破碎,锚固系统不理想,出现局部或整体破坏等。

破损原因分析:首先,国内此类伸缩装置用的边梁、中梁多采用钢板或型钢焊接连接成异型件的组合结构,焊接质量较难保证;

并且采用压条(或夹片)和螺钉扣紧密封橡胶带的做法,扣件容易锈蚀断裂,造成结构整体性差,电焊工作量大,加上焊接工艺不过关,焊接质量较难保证,出现开焊或橡胶带脱落甚至跳起飞出;

其次,安装这类伸缩装置的预留槽口内,既有锚固箱,又布置了较多的锚固钢筋,包括梁体内的主钢筋和预埋的锚固钢筋,给浇注混凝土带来困难,容易出现空洞、密实度不易保证、强度不足等问题,使用中会出现咬口、裂纹、局部坑槽,如不及时处理,将会出现锚固部位全面破坏的严重问题。

1、伸缩缝过窄病害分析

伸缩缝施工安装时宽度不合适。导致预留压缩量不足,伸缩缝挤死,内应力增大,挤坏伸缩缝体混凝土,使路面出现坑槽等路面破损。

伸缩缝宽与设计时预留的正常缝宽相比有异常的变化

2、伸缩缝高差病害分析

由于桥台沉陷、安装误差、支座垫石碎裂等原因导致桥梁一侧比路面一侧偏低,形成桥头跳车。经检查桥台沉陷未造成下部结构严重损伤。

同时桥头跳车和伸缩缝损毁这两类病害是相互关联的,桥头跳车引起较大的冲击荷载直接作用在伸缩缝附近,造成伸缩缝破损。

3、伸缩缝堵塞病害分析

由于沙石等杂物的聚集,伸缩缝容易丧失自由涨缩的能力,在夏天气温升高时主梁不能自由伸长,就容易在相邻的主梁或主梁与桥台之间产生推力,严重的甚至发生主梁的顶起或桥台背墙的开裂。

4、伸缩缝橡胶条损坏病害分析

除了老化,由于上述3种伸缩缝的病害,极易造成伸缩缝内橡胶条的开裂损害翘曲。

5、锚固区破损病害分析

施工时锚固区后浇带混凝土强度不够,或养护不到位。或者与桥面有高差,导致跳车,加上超载车辆频繁作用导致破损。容易造成伸缩缝钢构部分损坏。

6、伸缩缝渗水

这是橡胶条损坏或者锚固区破损引发的伴生病害。渗水引发水侵蚀危害非常大。

直接危害:渗水作用到以下部位引发相应危害。

(1)墩(台)支座橡胶老化开裂,钢板锈蚀。

(2)墩(台)混凝土、实心板梁体侵蚀麻面,钢筋锈胀。

(3)空心板梁腔内积水

(4)钢结构梁体端头锈蚀

间接危害:水侵蚀会蔓延至梁板、铰缝,损伤上部承重部件。若桥面铺装透水,会加剧下述病害。

(5)铰缝漏水,严重铰缝脱落。

(6)空心板腹板裂缝。

(7)桥梁单板受力(中小空心板梁桥此类病害较严重)。

2004年6月10日早晨7时许,辽宁省盘锦市境内田庄台大桥突然发生垮塌。大桥从中间断裂27米,有三辆汽车落水,农用车两名落水司乘人员逃生,所幸无人员死亡。事故原因是超载引发。

桥面悬臂梁端伸缩缝处长期渗水,导致牛腿耐久性下降,重车通过时突然断裂,造成挂梁脱落。

伸缩缝渗水

伸缩缝渗水,空心梁有水痕,打洞放水

钢结构桥梁伸缩缝防水尤为重要

7、其他类型病害

桥面连续伸缩缝破坏

橡胶伸缩缝螺帽松动

哈尔滨明阳滩大桥倒塌后断面

完全失管

伸缩缝完全用沥青混凝土代替

清理伸缩缝

修补、更换橡胶条

维修锚固区

整体跟换伸缩缝

伸缩缝清理是日常养护中最为重要的,往往也是最容易忽略的。

伸缩缝清理一般一个月一次,路面容易污染路段需加大频率。

清理时不得采用尖锐工具,防止破坏橡胶条。可以采用高压水枪、高强风机等设备。

橡胶条一旦破损,必须修补或者更换

局部较小的裂缝、破损可以采用环氧树脂粘结。

破损较大、老化严重的需要更换,更换时采用类似换轮胎的撬棒将旧的橡胶条抽出,同样方法换上新的橡胶条。

锚固区出现裂缝、破损必须马上修复。

锚固区裂缝可以采用环氧树脂进行灌缝处理,缝宽较大的采用环氧砂浆修补。

破损严重的,破损处凿除,露出钢筋和型钢部件,除锈,浇筑钢纤维混凝土或快速混凝土进行修补。

工艺流程

测量→划线→切缝→破除砼及杂物→安堵梁缝间泡沫板→毛勒伸缩缝吊装就位→调整毛勒伸缩缝平面位置→调整毛勒伸缩缝高程→锚固→解除锁定→做好保护→浇筑砼→抹面养生→开放交通。 

毛勒伸缩缝为例

1、切缝、开槽:伸缩缝装置的安装应尽量在路面铺装好后进行,槽口尺寸符合安装伸缩缝装置的要求。

2、清理槽口:必须把所有污物、尘土及其他不需要的东西全部予以清除。

3、检查在伸缩缝装置各梁之间间隙是否符合安装温度的要求,如不符合必须在制造厂工程技术人员的指导下进行调整,使伸缩缝装置各梁之间间隙符合设计要求,调整之后再按上夹具,以备安装

4、以两侧的沥青路面为标高,将伸缩缝装置放在槽口内,调整伸缩缝装置使其顶面与路面标高相同,其纵坡、横坡应与桥梁路面相符。

5、检查伸缩缝装置的位置,使伸缩缝装置在垂直缝的方向和顺缝方向的位置都符合设计要求如果此时个别预埋钢筋对伸缩缝装置的正确方向有防碍,可以用气割割掉。

6、先将伸缩缝装置一侧的锚固钢筋与预留槽的预埋钢筋相连并焊接,焊接时可以间隔一个焊一个,然后再将另一侧的锚固钢筋按上述步骤焊接。

当伸缩缝装置确认固定好后,夹具便可以取下,然后将其余的未焊接锚固钢筋与预埋钢筋完全焊接,使伸缩缝装置可靠锚固。

7、伸缩缝装置如果是分段安装的,接缝处必须采用焊接。型钢的焊接接头在制造工厂已经具备好,当两相临缝对正后,即可安装,每根梁全部焊接好后再按上述步骤进行锚固。

8、在梁端安装模板,模板按伸缩缝装置外型尺寸和预留槽的缺口进行制作,模板应做的相当严密,以防止沙浆流进位移控制箱或流进梁端缝隙。

9、检查安装的模板严密无缝以后再将预留槽清洗干净,便可浇注混凝土(采用钢纤维混凝土),并震捣密实。混凝土至少与该处的结构混凝土具有同一强度,浇注混凝土时要保持伸缩缝装置的顶面清洁。

伸缩缝安装允许偏差

注意事项:

1.施工温度和出厂预调间隙宽度。

2.构造缝填充泡沫板保护,底部V形橡胶条下部也应用聚乙烯泡沫板堵塞,以防止漏浆。 

3.顶部平整度控制

—END—

西藏高速

信息发布服务公众 寓教于乐

桥梁伸缩缝型号怎么划定的

伸缩缝按照性能及安装方法可以分为:GQF-C型、GQF-Z型、GQF-L型、GQF-F型。

其中GQF-MZL型数模式桥梁伸缩缝装置,是采用热轧整体成型的异型钢材设计的桥梁伸缩缝装置。GQF-C型、GQF-Z型、GQF-L型、GQF-F型伸缩缝装置适用于伸缩量80mm以下的的桥梁接缝,GQF-MZL型伸缩缝装置是由边梁、中梁、横梁和连动机构组成的模数式桥梁伸缩缝装置,适用于伸缩量80mm-1200mm的大中跨度桥梁。

公路桥梁伸缩装置分为:模数式桥梁伸缩装置和KS伸缩装置以及TST弹塑体伸缩装置

模数式

模数式桥梁伸缩装置分为:GQF-C型桥梁伸缩装置、GQF-MZL型桥梁伸缩装置

1、GQF-C型桥梁伸缩装置特点:

GQF-C型桥梁伸缩装置采用整体热轧16Mn异型钢,克服了挤压异型钢直线度和集合尺寸不均匀的特点,建筑高度低,国产热轧整体成型异型钢材高度仅50mm,结构简单,安装方便,具有明显的可靠性、舒适性和耐久性。既方便旧伸缩装置更换,又可供新桥时选用。

选用原则:

桥面铺装层厚度≥80mm

伸缩量≤80mm

2、GQF-MZL型桥梁伸缩装置特点:

MZL型伸缩装置结构突出的特点是:由边梁、中梁、横梁、位移控制系统、密封橡胶带等构件组成的系列伸缩装置。该伸缩装置的承重结构和位移控制系统分开,二者受力时互不干扰,分工明确,这样既保证受力时安全,又能达到位移均匀,使所有中梁在一个位移控制箱内均支承在同一根垂直横梁上的传统作法,这样对大位移量伸缩装置非常有利,减少了横梁数量,使位移控制箱体积减小到最小范围,节约了钢材。该结构还克服了斜向支承式伸缩装置要求加工和组装精度相当高的苛刻条件,否则四连杆结构极易出现自锁现象,影响伸缩自由和不易保证位移均匀的弊病。该结构各连接处均采用既能转动又能滑动结构。所以,对弯、坡、斜、宽桥梁适应能力强,可满足各种桥梁结构使用要求。

跨越式

KS系列跨越式伸缩缝是公司最新开发的一种新型伸缩缝产品,它仅用桥面铺装层厚度即可达到可靠的锚固,对桥梁设计和施工单位提供了极大的方便。同时它防水性能好,减震,受力合理,对梁端间隙的施工误差不敏感,使用寿命长,自动清理缝内垃圾,少养护,造价低。因此该产品一经问世,即受到桥梁设计和施工单位的普遍好评。

KS系列跨越式伸缩缝的标注:

伸缩缝长度(m)

伸缩量(mm)

KS系列伸缩缝

例1:KS(Ⅰ)140—12.5表示伸缩量140mm的KS(Ⅰ)系列伸缩缝一条,长12.5米。

例2:KS(Ⅱ)70—13.7表示伸缩量70mm的KS(Ⅱ)系列伸缩缝一条,长13.7米。

KS系列跨越式伸缩缝有KS(Ⅰ)与KS(Ⅱ)两种型号,每种型号根据伸缩量的不同分为:KS(X)20、KS(X)30、KS(X)40、KS(X)50、KS(X)60、KS(X)70、KS(X)80、KS(X)90、KS(X)100、KS(X)120、KS(X)140、KS(X)160、KS(X)180、KS(X)200、KS(X)250、KS(X)300、KS(X)350、KS(X)400十八种规格。

弹塑体

1、原理:

将专用的特制的弹塑体主料RS橡胶加热溶溶后,灌入经加热的碎石中,形成“TCS桥梁接缝弹塑体”。碎石支持车辆载荷,TCS-Z专用粘合剂保证界面强度。

2、特点:

a.TCS弹塑体直接平铺在桥梁界缝处,与前后的桥面或路面铺装形成连续体,桥面平整无缝,行车比有缝的桥自然更平稳、舒适、无噪音、振动小,且具有便于维护、清扫、除雪等优点。

b.构造简单,不需装设专门的伸缩构件和在梁端预埋锚固钢筋,施工方便快速,铺装冷却后,即可开放交通。

c.这种弹性接缝能吸收各方面的变形和振动,且阻尼性高,对桥梁减震有利,可满足弯桥、坡桥、斜桥、宽桥的纵横竖三个方向的伸缩和变形。

d.因接缝和桥面铺装连成一体,故密封防水性好,且耐酸碱腐蚀。

e.旧桥更换伸缩缝,可半边施工,对交通繁忙路段不中断交通。

f.造价低、耐用、养护更换少,经济效益和社会效益显著。

技术要求:

1.橡胶采用氯丁橡胶(即CR,适用于温度在-25℃-+60℃地区)或采用天然橡胶(即NR,适用于温度在-40℃-+60℃地区)

2.伸缩装置中使用的钢板,质量要求符合GB012,GB374的规定,使用的异型钢材,(即16MN或Q345)符合JT/T1591的规定.

GQF-C型

GQF-C型桥梁伸缩装置是适应我国公路桥梁建设的一种新型桥梁伸缩缝装置.GQF-C型桥梁伸缩装置采用整体热轧16Mn异型钢,GQF-C型桥梁伸缩装置综合技术性能和技术指标均达到或优于国际同类产品先进水平,结构型式及异型钢轧制均属国内首创,将成为交通行业标准推荐产品.GQF-C型桥梁伸缩装置产品特点:建筑高度低,国产热轧整体成型异型钢材高度仅50mm.适用于桥面铺装层厚度等于或大于80mm,伸缩量小于等于80mm的各种桥梁,既方便旧桥梁伸缩装置更换,又可供新桥梁修建选用.

GQF-C型桥梁伸缩装置中间橡胶密封条其技术要求:采用氯丁橡胶(CR)密封橡胶带的伸缩装置适用与温度为-25℃-+60℃地区.采用天然橡胶(NR)密封橡胶带的装置适用于温度为-40℃-+60℃地区.

安装为适应河流方向与行车路线不垂直的桥梁需要,可将锚固钢筋和位移控制箱斜向布置,即将伸缩量为0~80mm的各种伸缩装置及MZL160~1200mm的模数式伸缩装置的锚固钢筋及位移控制箱水平倾斜的焊在异型边梁上,其锚固钢筋与边梁的交角随桥梁方向与倾斜程度而改变

采购存放

按照设计图纸提出的不同型号、长度、密封橡胶件的类型及安装时的宽度等要求进行伸缩装置的购置和装配,不同牌号和型号的伸缩装置均由专门的生产厂家成套供应。伸缩装置预先在生产厂家组装好,由专门的设备包装后运送工地。装配好的伸缩装置在出厂前、生产厂家按图纸要求的安装尺寸,用夹具固定,以便保持图纸需要的宽度并分别标出重量、吊点位置。若组合式伸缩装置过长受运输长度限制或别的其他原因时,经监理工程师批准,在工厂试组装后,可以分段组装运输,但模数式伸缩装置必须在工厂组装。用于该分项工程的伸缩缝材料均按计划进场,伸缩装置运到工地存放时均垫设高度距地面至少30cm并用彩条布覆盖好,确保其不受损坏,满足开工的要求。

安装方式

a、安装时,按实际温度确定其安装宽度值。

b、伸缩缝安装过程,必须使用伸缩缝装置整齐排列,保持一定的倾斜度。确保伸缩装置的最高平面与完工的桥面相平。

c、施工方法

①清理槽口,使之达到设计宽度和深度,清除与位移箱埋入有干扰的钢筋,预留坑的开口必须大于伸缩缝的安装宽度。

②检查伸缩装置的各梁之间间隙是否符合安装温度要求,否则,应用水平千斤顶、夹具进行调整直至符合设计要求,调整好后,立即安上专用夹具。

③根据伸缩缝中心位置设置起吊装置,将伸缩装置安入在槽口内,并使伸缩装置的顶面与桥面标高相同。同时注意纵横坡也应与桥面相符。

④伸缩装置吊入预留槽后,其中心线应与梁端预留间隙中心线对正,其长度与桥梁宽度对正。

⑤对伸缩装置直线段进行调整,并使各纵梁的缝隙均匀一致。

⑥再在伸缩装置箱体或锚固板处,立焊Ф16以上的钢筋进行高度定位,横焊Ф16钢筋进行宽度定位。

⑦伸缩装置正确就位锚固后,便可以将伸缩装置一侧的锚固钢筋和预留槽预留钢筋焊接以保证伸缩装置线向固定并找平,焊接时只要每隔2~3个锚固筋焊接一个即可,然后再按上述步骤焊接另一侧的锚固筋。待两侧达到固定后,就可将其余焊接的锚固筋再进行焊接,确保可靠锚固。在焊接锚固筋时要注意不要在边梁和中梁上任意施工焊,以防钢梁发生扭曲变形。

⑧伸缩装置如果分段安装,接缝处必须焊接,焊接应由专业人员进行,每根梁焊好后,再按⑦步骤进行锚固。

⑨根据缝的外形尺寸和预留槽口制作模板,模板放好后应遮挡严实,以防水浆流入位移箱内,伸缩缝上平面加盖板,以防砂浆落入橡胶密封带,在检查装置的正确平整度和中线位置,以及缝隙是否均符合要求后,方可灌入混凝土,并对混凝土充分振捣压实,尤其应注意位移箱与预留坑基面不能留下空洞。待混凝土固化后撤去模板和伸缩缝上的固定卡。

⑩在伸缩缝处混凝土未达到80%的强度前,伸缩缝不能承受外来荷载作用。

端部防水

为防止橡胶密封带内的积水流向墩台,可在伸缩缝装置两端设置翘头,伸缩缝装置的翘头可根据不同的路面设计不同的样式(翘起长度及角度),翘头一般置于防撞墙内部。

破损原因

桥梁伸缩缝装置由于设置在梁端构造薄弱的部位,直接承受车辆荷载的反复作用,又多暴露于大自然中,受到各种自然因素的影响,因此,伸缩装置是易损坏、难修补的部位。伸缩装置产生破损的原因是多方面的,主要有:

1、设计不周

设计时梁端部未能慎重考虑,在反复荷载作用下,梁端破损引起伸缩装置失灵。另外,有时变形量计算不恰当,采用了过大的伸缩间距,导致伸缩装置破损。

2、伸缩缝装置自身问题

伸缩装置本身构造刚度不足锚固的构件强度不足,在营运过程中产生不同程度的破坏。

对伸缩装置的后浇压填材料没有认真对待、精心选择,致使伸缩装置营运质量下降,产生不同程度的病害。

4、伸缩缝的施工与浇筑

施工过程中,梁端伸缩缝间距没有按设计要求完成,人为地放大和缩小,定位角钢位置不正确,致使伸缩装置不能正常工作。这样会出现下列情况:由于缝距太小,橡胶伸缩缝因超限挤压凸起而产生跳车;由于缝距过大,荷载作用下的剪切力以及车辆行驶的惯性,会将松动的伸缩缝橡胶带出定位角钢,产生了另一类型的跳车。施工时伸缩装置的锚固钢筋焊接的不够牢固,或产生遗漏预埋锚固钢筋的现象,给伸缩缝本身造成隐患;施工时伸缩装置安装的不好,桥面铺装后伸缩缝浇筑的不好,使用过程中,在反复荷载作用下致使伸缩缝损坏。

5、连续缝设置不够完善

为了减少伸缩缝,大量采用连续梁或连续桥面。桥面连续就需设置连续缝,连续缝的设置不够完善,致使连续缝破损,而产生桥面跳车。桥面连续缝处,变形假缝的宽度和深度设置得不够规范,不够统一,这也不同程度地影响着连续缝的正常工作。

桥梁伸缩缝型号怎么确定

那就要看施工量了。旧桥有的很难搞的,80缝以上一般价格在280元/米~380元/米。80缝以下,大约150-200元/米,新桥也要350元/米,要看技术难度再定。希望能帮到你。